• Title/Summary/Keyword: Ink Transfer Ratio

Search Result 8, Processing Time 0.024 seconds

Evaluating Interfacial Force between Viscoelastic Ink and Substrate in Gravure Printing Process (그라비아 프린팅 공정에서 점탄성 잉크와 기판의 계면접착력 평가)

  • Yu, Milim;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.111-115
    • /
    • 2015
  • To produce patterns with high resolution in gravure printing, it is important to increase ink transfer ratio. The ink which has higher affinity with substrate can be transferred more from the roll to the substrate due to the good wettability between ink and substrate. However, it is difficult to evaluate the affinity between the substrate and the ink which is viscoelastic in nature. In this study, we suggest a practical method to evaluate the interfacial interaction between the ink and various substrates.

Study of Liquid Transfer Process for micro-Gravure-Offset Printing (마이크로 그라비아 옵셋 프린팅에서의 유체 전이 공정에 관한 연구)

  • Kang, Hyun-Wook;Huang, Wei-Xi;Sung, Hyung-Jin;Lee, Taik-Min;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1098-1102
    • /
    • 2008
  • To increase the ink transfer rate in the micro-gravure-offset printing, the liquid transfer process between two separating plates is investigated. During the liquid transfer process, in which one plate is fixed and the other one moves vertically, a sessile droplet is separated into two droplets. The volume ratio of the two droplets depends on the contact angles of the two plates. In a numerical study of the ink transfer processes, liquid transfer between two parallel separating plates and between a trapezoidal cavity and an upward moving plate are simulated, as models of the printing of ink from the offset pad onto the substrate and the picking up of ink from the gravure plate by the offset pad, respectively. Also, in experimental study, to obtain various surface contact angles, chemical treatment, plasma treatment, and electrowetting- on-dielectric (EWOD) surface are considered. The transfer rate between two plates is calculated by analyzing the droplet images. From the results, the optimal surface contact angles of the units of the micro-gravure-offset printing can be characterized.

  • PDF

Effect of Kinetically Processing Conditions on Ink Transfer Ratio for Transfer Printing

  • Park, Sung-Ryool;Kim, Se-Min;Ryu, Gi-Seong;Lee, Chang-Bin;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.910-913
    • /
    • 2009
  • This paper examines attaching speed, detaching speed and contact time which affected in the ink transfer ratio and presents the best conditions for fabrication process of electrodes with Ag-ink using microcontact printing method. In conclusion, it shows the best printing characteristic by two conditions. One of condition is the attaching speed have to within less than 1mm/s and the detaching speed is high velocity as 1000mm/s and the contact time is taken about the minimum time when inking process. Another condition is the attaching speed have to within more than 100mm/s and the detaching speed have to within less than 1mm/s and the contact time is longer than 30second when the printing process. As using these condition and the stamp sized 5cm${\times}$5cm, it was possible for printing equally until $30{\mu}m$ of width. The printed thickness of a electrode was about 300 to 500 nm, the surface roughness was about dozens nm under 50 nm.

  • PDF

Analysis of Ink Transfer for R2R Printing Process with High Speed Operation and Complex Roll Patterns (고속 웹 이송속도 및 복잡한 롤 패턴 형상을 고려한 R2R공정에서의 잉크전달 특성 해석)

  • Kim, Kyung-Hun;Kim, So-Hee;Na, Yang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.55-60
    • /
    • 2010
  • Ink transfer process from the printing roll to the moving web was investigated using a CFD technique for the application in R2R printed electronics. In line with the requirement that the web handling speed needs to be increased further for the cost competitiveness, the effects of web moving velocity with relatively complex roll patterns were analyzed. To make the present analysis more realistic, the numerical geometry and the ink properties were selected to match those of the real printing production system. Our numerical results showed that both web handling speed and complex printing-roll patterns influenced the shape of the transferred ink. As the web moving speed approaches towards 30mpm, a significant distortion of the shape of the transferred ink occurred. In the range of pattern width smaller than 100 microns, a phase distortion was also found to occur in all the printing-roll patterns considered in the present work but the ratio of the phase distortion to the line width gets smaller as the width becomes smaller. Thus, the web handling speed and the shape of printing-roll pattern will be important elements for the better printing quality under 100 micron line width range.

Effect of Properties of Conductive Ink on Printability of Electrode Patterning by Gravure Printing Method (그라비어 방식을 이용한 전극 인쇄 시 전도성 잉크의 물성이 인쇄성에 미치는 영향)

  • Nam, Ki Sang;Yoon, Seong Man;Lee, Seung-Hyun;Kim, Dong Soo;Kim, Chung Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.573-577
    • /
    • 2013
  • The one of the most important issue in roll-to-roll gravure printing is increase of ink transfer ratio or printability. As the result of high ink transfer ratio or printability, we can assess the quality of the printed patterns. The rheological properties are the important factors for the printability of electrodes patterning. In this study, the rheological properties of conductive ink are controlled by adding the solvent. The inks with different rheological properties are used for the patterning of the electrodes of $100{\mu}m$ by gravure printing equipment. The various printing speed, which also affect the rheological properties of conductive ink, is applied and the printed patterns are compared for their width and aspect ratio. Decreasing in the ink viscosity as well as increasing in the printing speed decreases the printability in gravure patterning, which shows that the rheological properties are important factors for the printability of gravure patterning.

Computer Simulation for the Cavitation Changes at the Exit of Offset Printing Nip (오프셋 인쇄의 틈새출구에서 공동의 변화에 대한 시뮬레이션)

  • Youn, Jong-Tae;Kim, Yun-Taek;Lim, Soo-Man
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • Offset paper printing is a promising roll-to-roll technique for color printed materials. Although it is no doubt that understanding ink transfer mechanism in offset printing process is necessary to achieve high printing quality, investing the relationship between inks and substrates at the nip is difficult experimentally due to high printing speed. In this paper, rheological behavior and splitting point of the ink at the nip is studied using package software Ployflow and Flow 3D based on Navier-Stokes equation. Polydimethylsiloxane (PDMS) ink and IGT printability tester were used for an model ink and experiment to compare with that of simulation data, respectively. As a result, higher viscosity at state flow and pressure increased ink transfer due to higher possibility of presence of cavitation at the nip and increase in covering area ratio. These results have shown good agreements with experimental data compared by measuring density of print through.

The Rheological Properties of Printing Ink according to the Molecular Weight of Rosin Modified Phenol Resin (로진 변성 페놀 수지의 분자량 변화에 따른 인쇄 잉크의 유변학적 특성에 관한 연구)

  • Lee, Kyu-Il;Kim, Sung-Bin;Kim, Tae-Hwan
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • The rheological characteristics of an ink relate to its performance on the press and to the printing quality such as ink stability, transfer characteristics, mottle, squash, misting, dot gain, and so on. For lithographic print, the emulsification of ink is an important factor to determine the product. And also the rheological characteristics of the emulsified ink should be investigated. Thus, in this study, the effects of the changing molecular weight of rosin modified phenolic resin on the water-pickup ratio of neat inks were studied. And then rheological properties of neat inks and emulsified inks with changing molecular weight of rosin modified phenolic resin were analyzed by using rotational rheometer.

  • PDF

Analysis of Kinetic Parameter Effects on Printing Property in Micro-Contact Printing of Ag Ink (Ag 잉크의 미세접촉인쇄에 있어서 동역학적 파라미터가 인쇄특성에 미치는 영향 분석)

  • Park, Sung-Ryool;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.7-14
    • /
    • 2010
  • This paper describes the effects of kinetic parameters such as attaching speed, attaching time, and dettaching speed on printing property of electrodes which were fabricated by micro-contact printing with Ag ink. In inking process the attaching speed was preferable to be less than 1 mm/s, attaching time as short as possible, and detaching speed larger than 1000 mm/s in order to obtain the transfer ratio of ink larger than 98%. Meanwhile in printing process the parameters were totally opposite to the results of inking process; attaching speed larger than 100 mm/s, attaching time larger than 30 sec, and detaching speed less than 1 mm/s for the best results. With the parameters we could obtain the micro-contact printed electrodes with the minimum line width of $30\;{\mu}m$, thickness of 300~500 nm, roughness less than 50 nm, and resistivity of about $15{\sim}16{\mu\Omega\cdot}cm$.