• 제목/요약/키워드: Injection ratio

검색결과 1,576건 처리시간 0.027초

Bluff Body 후류에 형성되는 확산화염의 보염특성에 관한 연구 (A study on the stabilization characteristics of the diffusion flame formed behind a bluff body)

  • 안진근;배윤영
    • 대한기계학회논문집
    • /
    • 제19권12호
    • /
    • pp.3344-3351
    • /
    • 1995
  • The stability of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated in various fuel injection angles, fuel injection ratios, grids and extension ducts. The flame stability limits, temperature distributions and length of recirculation zones, direct photographs of flames were measured in order to discuss the stabilization mechanism of the diffusion flame. The results from this study are as follows. The fuel injection angle is an important factor in determining the flame stability. Stability limits can be improved by variety of the fuel injection ratio. When the grid and extension duct are set, stability characteristics are varied with the blockage ratios, grid intervals, and grid numbers. The recirculation zone not only serves as a steady ignition source of combustion stream but also governs the stabilization mechanism.

커먼레일식 분사시스템에서 바이오디젤연료의 분사특성에 관한 연구 (A Study on the Injection Characteristics of Biodiesel Fuels Injected through Common-rail Injection System)

  • 서영택;서현규;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.97-104
    • /
    • 2007
  • The object of this work is to analyze the macroscopic spray performance and atomization characteristics between diesel and biodiesel fuels. In this study, the effects of mixture ratios of biodiesel fuel on the spray tip penetration, fuel injection rate, spray cone angle, and the atomization characteristics such as droplet size, droplets distribution, and spray arrival time according to the axial distance were investigated at various injection parameters. It is revealed that the injection rate is more affected by injection pressure than mixture ratio. And, the spray development process is closely matched between diesel and biodiesel fuels. However, the droplet atomization characteristics of biodiesel shows deteriorated results as the mixture ratio of biodiesel increased because of the high viscosity and density.

분사구멍의 길이가 수직 분사구멍 내부에서의 3차원 유동에 미치는 영향 (Effects of Length-to-Diameter Ratio on the Three-Dimensional Flow Within an Injection Hole Normally Oriented to the Mainflow)

  • 이상우;주성국
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1255-1266
    • /
    • 1998
  • Effects of a length-to-diameter ratio, L/D, on the three-dimensional flow and aerodynamic loss within an injection hole, which is normally oriented to the mainflow, have been investigated by using a straight five-hole probe. The length-to-diameter ratio of the injection hole is varied to be 0.5 and 2.0 for blowing ratios of 0.5, 1.0 and 2.0. Regardless of the blowing ratio, flows within the hole and at the jet exit are strongly affected by the length-to-diameter ratio. In the case of L/D=0.5, the inside flow is considerably influenced by the mainflow, and the exit flow variation is found to be the greatest. The aerodynamic loss in this case is usually attributed to jet -mainflow interactions. In the case of L/D=2.0, the flow separation and reattachment in the inlet region are completely separated from the complicated exit flow, and the aerodynamic-loss production is mainly due to the inlet flow separation.

전단동축형 분사기의 유량계수에 대한 형상학적 변수들의 영향 (Effect of Geometrical Parameters on Discharge Coefficients of a Shear Coaxial Injector)

  • 안종현;이근석;안규복
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.95-102
    • /
    • 2020
  • Six shear coaxial injectors for a 3 tonf-class liquid rocket engine using oxygen and methane as propellants were designed and manufactured by considering geometric design parameters such as a recess length and a taper angle. Cold-flow tests on the injectors were performed using water and air as simulants. By changing the water mass flow rate and air mass flow rate, the injection pressure drop under single-injection and bi-injection was measured. The discharge coefficients through the injector oxidizer-side and fuel-side were calculated and the discharge coefficient ratio between bi-injection and single-injection was obtained. Under single-injection, the recess served to reduce the injection pressure drop on the injector fuel-side. For the injectors without recess, the discharge coefficients under bi-injection were almost the same as those under single-injection. However, for the injectors with recess, the taper angle and bi-injection had a significant effect on the discharge coefficient.

무화염 연소 형성에 미치는 공급조건에 관한 연구 (Study of injection condition on formation of Flameless combustion)

  • 홍성원;이필형;송기종;황상순
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.47-49
    • /
    • 2013
  • Entrainment length and recirculation ratio that are important factors of flameless combustion systems were analyzed by injection conditions using three dimensional numerical simulation. As a result, the entrainment length increased with an increase of momentum ratio and distance of between nozzle. Also, in case of increasing in momentum of oxidation, recirculation ratio was increased and the average temperature was decreased.

  • PDF

바이오 디젤 혼합비에 따른 커먼레일 인젝터의 분사 및 내구특성에 관한 실험 연구 (An Experimental Study on Injection and Durability Characteristics of Common-rail Injector According to mixture Ratio of Bio-diesel)

  • 임석연;김태범;유상석
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.44-50
    • /
    • 2011
  • An object of this study is to understand the correlation of injection characteristics and injector dimensions according to biodiesel mixture. The Injection characteristics of different types of common-rail injectors are the number of nozzle holes (5~8), jet cone angle ($146^{\circ}{\sim}153^{\circ}$), hydraulic flow rate (830~900 ml/min) injection quantity and response time. Prior to characteristic experiment, the reference injector has been selected in 6 candidates injectors under the investigation of injected quantity according to the biodiesel mixture so that injector type can be determined. The injector is used for the characteristic experiment which varied the various operating conditions including pressure 23 MPa, 80 MPa, 160 MPa, changing in injection duration 0.16 ms~1.2 ms and even mixture ratio. The result shows that the nozzle hole number and cone angle influence the injection quantity much more than nozzle hole diameter at low injection pressure and the nozzle hole diameter at high injection pressure, post injection duration.

분사를 수반하는 평씨일 내의 유동해석 (Flow Analysis of the Plain Seal with Injection)

  • 이관수;김우승;김기연;김창호
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.795-802
    • /
    • 1992
  • 본 연구에서는 일정한 각도의 분사를 갖는 평씨일(plain seal)에 대하여 각 인자들이 누수성능에 미치는 영향을 수치적으로 조사하였다. 인자들로는 축방향 레 이놀즈수, 축회전속도, 분사의 유입속도, 간극비, 분사의 위치 및 유입각 등이 고려되 었다.

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 NOx와 Soot 동시 저감에 관한 연구 (제1보 : 층상분사장치의 설계 및 층상분사 연소특성) (A Study on the Simultaneous Reduction of NOx and Soot with Diesel-Methanol Stratified Injection System in a Diesel Engine (Part I : Design of Stratified Injection System and Combustion Characteristics of Stratified Injection))

  • 강병무;김종률;이선봉;이태원;하종률
    • 한국분무공학회지
    • /
    • 제5권2호
    • /
    • pp.28-34
    • /
    • 2000
  • To reduce the soot and NOx simultaneously, a new system of stratified injection is developed. This system discharges stratified diesel-methanol in a D. I. Diesel Engine. Nozzle and delivery valve of conventional injection system were remodeled to inject diesel and methanol from one injector sequently. The quantity of diesel and methanol was controled precisely by micrometers mounted on the injection control lack. The real injection ratio of dual fuel was measured by volumetric ratio. We could confirm the capabilities that soot and NOx simultaneously were reduced by diesel-methanol stratified injection from the results of in-cylinder pressure data obtained from combustion experiment by stratified injection, heat release rate and mass fraction bumed.

  • PDF

분사 압력에 따른 수소 제트의 형상과 LIBs를 적용한 국부 당량비 계측 (Hydrogen Jet Structure and Measurement of Local Equivalence Ratio by LIBs under the Different Injection Pressure)

  • 이상욱;김정호;배충식
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.84-93
    • /
    • 2022
  • To implement carbon-neutrality in transportation sectors until 2050, hydrogen is considered a promising fuel for internal combustion engines because hydrogen does not contain carbon itself. Although hydrogen does not emit CO2 emission from its combustion process, the low energy density in a volume unit hinders the adoption of hydrogen. Therefore, the understanding of hydrogen jet behavior and measurement of equivalence ratio must be conducted to completely implement the high-pressure hydrogen direct injection. The main objective of this research is feasibility test of hydrogen local equivalence ratio measurement by laser-induced breakdown spectroscopy (LIBs). To visualize the macroscopic structure of hydrogen jet, high-speed schlieren imaging was conducted. Moreover, LIBs has been adopted to validate the feasibility of hydrogen local equivalence ratio measurement. The hydrogen injection pressure was varied from 4 MPa to 8 MPa and injected in a constant volume chamber where the ambient pressure was 0.5 MPa. The increased injection pressure extends the vertical penetration of hydrogen jet. Due to the higher momentum supply when the injection pressure is high, the hydrogen has easily diffused in all directions. As the laser trigger timing has delayed, the low hydrogen atomic emission was detected due to the longer mixture formation time. Based on equivalence ratio measurement results, LIBs could be applied as a methodology for hydrogen local equivalence ratio measurement.

연소실내의 압력 변동에 따른 연료 분사구에서의 당량비 변동에 관한 수치해석 (Numerical Simulation on Equivalence Ratio Fluctuation at the Fuel Injection Hole with respect to Pressure Fluctuation in a Combustion Chamber)

  • 김현준;홍정구;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-35
    • /
    • 2006
  • It has been observed in experiments that combustion instability of low frequency (${\sim}$ 10Hz) results form the modulation of equivalence ratio at fuel injection hole when a pressure fluctuation propagates upwards along the channel of the burner under an unchoked fuel flow condition. In this study, a commercial program was used to determine how the fuel flow rate changed with respect to the pressure, velocity of the fuel flow and the mass fraction in a choked and an unchoked condition. The calculation focus on the upstream of the dump plane to know how the forced pressure with the fuel injection conditions affects the modulation of the equivalence ratio. Therefore, it is found that pressure fluctuation leads to oscillation of mass flow rate and then results in equivalence ratio modulation under the unchoked fuel flow condition.

  • PDF