• Title/Summary/Keyword: Injection quantity

Search Result 270, Processing Time 0.029 seconds

Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance (노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

A Study to Develop Optimal Injection System Using ISIS(the In-situ Soil Injection Simulator) (ISIS 시스템을 이용한 최적 그라우팅 시스템 개발 연구)

  • 천병식;김진춘;김경민;이민호;이정훈;김진수;박종근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.619-626
    • /
    • 2002
  • In this study, a correlation among pressure, time and quantity of injection was organized from the laboratory tests, which were executed many times representing in-situ soil conditions carefully and then it would be applied to the in-situ soil injection simulator which will be developed for optimal injection into the ground. The sort of sample soils were both sand(A specimen) and silty sand(B specimen). Injection tests were gone into operation by compaction state, injection velocity and the depth individually. In the ground improved with permeation Infection, the relation among injection pressure of the same depth, the injected quantities and time were systematic by the depth. By defining the limit range of injection pressure and quantity about the variety of a linear equation obtained from lining each of their trend, the application of laboratory injection monitoring program and the data to evaluate its realization were produced. In the ground improved with root type injection, the relation between injection pressure and the injected quantities was irregular because fracture state occurred quickly.

  • PDF

Investigation on the Non-linear Injection Characteristics of GDI injector using 1D Simulation (1D 시뮬레이션 기반 GDI 인젝터의 비선형적 분사 특성 해석에 대한 연구)

  • Jinwoo Lee;Seoksu Moon;Donghan Hur;Jinsuk Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.169-175
    • /
    • 2023
  • Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

Analysis of the Physical Quantity Variation in the Cavity and the Quality of the Molded Product According to the Injection Speed in Injection Molding

  • Kwon, Soon Yong;Cho, Jung Hwan;Roh, Hyung Jin;Cho, Sung Hwan;Lee, Yoo Jin;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.317-325
    • /
    • 2017
  • Molding conditions can be described as factors that determine the quality of a product obtained from injection molding. Many studies have been performed on the injection molding pressure, injection temperature, packing pressure and other molding conditions related to part quality. However, the most accessible factor among the adjustable molding conditions during actual injection is the injection speed. In this study, we simulated the variation of the physical quantity according to injection speed and performed experiments to understand the effect of injection speed on the actual product. A CAE analysis program (Moldflow) was used to simulate and analyze the results using PC and PBT for two models. In order to compare these results with the experimental results, an actual injection molding was performed for each injection speed, and the correlation between simulation and injection molding, especially for the shrinkage of the molded article, was discussed.

Effect of Injection Conditions on the Spray Behaviors of the Multi-hole GDI Injector (분사 조건이 다공형 GDI 인젝터의 분무 거동에 미치는 영향)

  • Park, Jeong-Hwan;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2012
  • The purpose of this study is to investigate the overall spray behavior characteristics for various injection conditions in a gasoline direct injection(GDI) injector with multi-hole. The spray characteristics, such as the spray penetration, the spray angle, and the injection quantity, were studied through the change of the injection pressure, the ambient pressure, and the energizing duration in a high-pressure chamber with a constant volume. The n-heptane with 99.5% purity was used as the test fuel. In a constant volume chamber, the injected spray was visualized by the spray visualization system, which consisted of the high-speed camera, the metal-halide lamp, the injector control device, and the image analysis system with the image processing program. It was revealed that the injection quantity was mainly affected by the difference between the injection pressure and the ambient pressure. For low injection pressure conditions, the injection quantity was decreased by the increase of the ambient pressure, while it nearly maintained regardless of the ambient pressure at high injection pressure. According to the increase of the ambient pressure in the constant volume chamber, the spray development became slow, consequently, the spray tip penetration decreased, and the spray area increased. In additions, the circular cone area decreased, and the vortex area increased.

A Basic Study on the Standardization of Epoxy Injection on Concrete Structure Crack (콘크리트 구조물 균열에 에폭시 주입의 표준화를 위한 기초적 연구)

  • Baek, Jong-Myeong;Jang, Seog-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • Repairing concrete structures depended on only technician' experience without quality test standards would have problems. For solving those problems, this paper has analyzed the relations between injection quantify and crack width, injection time and crack width, injection pressure and crack width, injection pressure/time and crack width, injection quantity and structure size, injection quantify and individual crack Position, injection time and crack width/structure thickness. The data gained from this analysis would be helpful for systematic quality control of repairing concrete structures.

A Study on the Combustion and Performance Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축착화 디젤엔진의 분사시기 변화에 따른 연소 및 성능특성에 관한 연구)

  • Kim, Gi-Bok;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • Since the oil shock of 1970's there was a strong upward tendency for the use of the high viscosity and poorer quality fuels. Therefore the misfiring engine occurs due to the decrease of quantity injected for lean burn and emission control in Compression Ignition Common Rail Direct Injection diesel engine. In this study, it is designed and used the test bed which is installed with fuel injector controller. In addition to equipped engine using CRDI by controlling the injection timing with mapping modulator, it has tested and analyzed the engine performance and combustion characteristics, as it is varied that they are the operating parameters: fuel injected quantity, engine speed and injection timing.

A Comprehensive Study on Fuel Injector Test Bench for Heavy Duty Engine

  • Das, Shubhra Kanti;Thongchai, Sakda;Lim, Ocktaeck
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.195-201
    • /
    • 2015
  • This study discusses a fuel injector test bench containing a mechanical type fuel supply system for heavy duty diesel engine. The main focus of this study was to evaluate the design stability of the test bench, which basically measures the injector durability of a multi-hole heavy duty injector by using pure diesel as a test fuel. In this experiment, diesel spray was controlled by a specially designed control box and all the experiments were carried out to measure e.g. fuel injection pressure and fuel injection quantity to understand the injection status which is interlinked with the stability factor of total test bench design. Also, the durability test was performed to understand the heavy duty operation lastingness of the designed system and the flow rate of the installed distributor pump in the fuel supply system of this studying test bench was compared with LO-1 and LO-2 pump. The results of the above mention tests revealed that the injector test bench design and control system can serve the purpose for heavy duty injector.

A Study on the Control Characteristics for Reduction of Particulate Material by HC Injection (HC 분사에 의한 디젤 분진 저감의 제어특성 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.968-975
    • /
    • 2009
  • The goals of this research are to understand the regeneration characteristics in diesel particulate filter using the HC injection. This research emphasized on the development of Continuously Regenerating DOC/DPF and HC technology which was the best particulate matters removing technology of current existing technology. This experimental study has been conducted with equipped a Continuously Regenerating DOC/DPF and HC injection on displacement 2.0, 3.3 $\ell$ diesel engine and compared in terms of particulate material and emission. In this study, we could constructed 3 kinds of database according to quantity of temperature to decide the HC injection quantity and develop DOC/DPF ECU algorithm.