• Title/Summary/Keyword: Injection pressure

Search Result 2,436, Processing Time 0.028 seconds

An experimental study on spray pattern and droplet size distribution of diesel spray (디젤 분무의 분무 형태와 입경 분포에 관한 실험적 연구)

  • 지요한;이종화;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.102-108
    • /
    • 1992
  • To clarify the structure of a diesel spray, a transient non-evaporating diesel spray injected under different ambient pressure and different injection pressure was studied. Spray tip penet- ration and spray angle were measured by taking the high speed shadowgraph of spray and Sauter mean Diameter(SMD) was also measured by light scattering technique at different positions along the spray axis and at different time from the start of injection. The effects of the operating parameters on the spray shape and SMD were investigated. By increasing the injection pressure, the spray tip penetration and the spray angle increased and the change of the ambient pressure also resulted in the considerable change in the shape of the spray. The analysis of SMD measurement showed that the atomization is a process that continues in sp- ace and time. As the injection pressure increases SMD decreases rapidly and with the increa- se of the ambient pressure the atomization process ends faster than the lower ambient press- ure and at lower pressure the atomization process continues to much farther downstream and far afterward.

  • PDF

An Analysis of stress concentration and crack in injection mold by cavity pressure (사출금형에서 내압에 의한 응력집중 및 크랙 분석)

  • Choi, Sung-Hyun;Hang, Su-Jin;Choi, Sung-Ju;Lyu, Min-Young
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.159-162
    • /
    • 2008
  • High pressure is involved during injection molding operation specially packing phase. Cracks in the mold are often occurred by high cavity pressure. In this study, structural analysis of mold has been performed using commercial softwares, Abaqus and Ansys, to investigate cause of crack in the injection mold. Structural analysis contains four cases: stress distribution according to the cavity pressure, stress concentration according to the boundary conditions, stress concentration for inter-locking design of mold, and stress concentration for distributed cavity pressure. Through this study it was observed that the locations of stress concentrations were coincident with locations of crack. Robust mold design is being required to withstand high cavity pressure.

  • PDF

A study on the Injection Molding Process of the Case of Drum Type Washer using Moldflow (Moldflow를 이용한 드럼세탁기 케이스의 사출성형공정에 관한 연구)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.90-96
    • /
    • 2009
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. This report investigates that the optimum injection molding condition for minimum of shrinkage. Molding shrinkage is occurred by several reasons such as thermal shrinkage, a hardening process and compressibility. This report concentrate on shrinkage by a hardening process. As Change a holding pressure and holding time, checked deflections of X, Y, Z directions by shrinkage based on same condition. In conclusion, it was found that holding pressure is stronger and holding time is longer, the deflection by shrinkage is smaller because injection molding needs enough time for cooling and high density. The FEM Simulation CAE tool. Moldflow, is used for the analysis of injection molding process.

Thermodynamic Approach to the Mixture Formation Process of Evaporative Diesel Spray (증발디젤분무의 혼합기 형성과정에 대한 열역학적 접근)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.201-206
    • /
    • 2009
  • The focus of this work is placed on the analysis of the mixture formation process under the evaporative diesel-free spray conditions. In order to examine homogeneity of mixture within the vapor phase region of the injected spray, image analysis was carried out based on the entropy of statistical thermodynamics. As an experimental parameter, the injection pressure and ambient gas density were selected, and effects of the injection pressure and density variation of ambient gas on the mixture formation process in the evaporative diesel spray were investigated. In the case of application of the thermodynamic entropy analysis to evaporative diesel spray, the value of the dimensionless entropy always increases with increase in time from injection start. Consequently, the dimensionless entropy in the case of the higher injection pressure is higher than that of lower injection pressure during initial injection period.

Numerical Analysis of the Effect of Injection Pressure Variation on Impaction Spray Characteristics (분사압력변화가 충돌분무특성에 미치는 영향에 관한 수치적 고찰)

  • 김승철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.47-53
    • /
    • 1999
  • Small compression-ignition direct injection engines have been developed as a measure to improve a fuel efficiency and reduce harmful exhaust gases. Those small engines generally employ high injection pressure increase on the spray impacting on a wall is discussed in this paper. The gas phase is modelled by the Eulerian continuum conservation equations of mass momentum energy and fuel vapour fraction. The liquid phases is modelled following the discrete droplet model approach in Lagrangian form and the droplet wall interaction is modelled as a func-tion of the velocity normal to impaction lands. The droplet distributions vapor fractions and gas flows are analyzed in various injection pres-sure cases. The penetrations of wall spray and vapor increase and the Sauter mean diameter decreases with increasing injection pressure.

  • PDF

The effect of the injection molding conditions on the shrinkage of HIPS (사출성형조건이 HIPS 수축율에 미치는 영향)

  • Cha B. S.;Rhee B. O.;Choi K. I.;Koo B. H.;Park H. P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.259-264
    • /
    • 2005
  • The shrinkage of the product in injection molded part occurs due to the volume change with variation of temperature and pressure and is influenced by the processing conditions of injection molding. Mold designers greatly concerns the shrinkage of parts for a high dimensional accuracy. In this study, bar type HIPS specimen with 15x19 grid on the surface was tested. The amount of shrinkage of flow and transverse directions was examined with respect to the injection molding conditions such as melt temperature, injection speed, holding pressure, mold temperature and cooling time. As the packing pressure increased, the difference of shrinkage of both directions is decreased and the absolute shrinkage value also decreased.

  • PDF

Effect of Injection Pressure on Atomization Characteristics of Fuel Spray in High-Pressure Gasoline Injector (가솔린 인젝터의 연료 분무 미립화 특성에 미치는 분사 압력의 영향)

  • Lee, Chang-Sik;Choi, Soo-Chon;Kim, Min-Kyu;Kwon, Sang-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.555-560
    • /
    • 2000
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDl engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

The Whole Region Pressure Measurement of Cavity Downstream using PSP Technique (PSP를 이용한 Cavity 후류의 전역적 압력분포 측정)

  • Kim, Ki-Su;Jeon, Young-Jin;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.317-321
    • /
    • 2007
  • PSP (Pressure Sensitive Paint) technique can measure continuous pressure field by analyzing the oxygen quantity using optical method. The surface pressure of down stream after the sonic jet that injected transversely into the supersonic freestream was measured by PSP technique. Moreover the effect of various rectangular shaped cavities in front of the jet was measured by PSP technique. A comparison of the PSP results with conventional pressure tap and CFD indicates good agreement. The result shows that the cavity affects the pressure distribution in the rear of the jet injection.

  • PDF

The Aerodynamic & Respiratory Muscle Pressure Aspects of Patients with Adductor Spasmodic Dysphonia (내전형 경련성발성장애의 호흡압력과 공기역학적 특징)

  • Nam, Do-Hyun;Choi, Seong-Hee;Choi, Jae-Nam;Choi, Hong-Shik
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.203-213
    • /
    • 2005
  • This study was conducted to investigate the respiratory and aerodynamic function of adductor spasmodic dysphonia (ADSD) patients. Participants were (1) 18 females SD patients with non- Botulinum toxin injection (2) 14 females SD patients who had taken treatment of Botulinum toxin injection. (3) 14 age- and sex- matched normal female controls. Spirometer and phonatory function analyzer were used for respiratory muscle pressure (MIP: Maximum inspiratory pressure), MEP: Maximum expiratory pressure)& MPT(Maximum phonation time) and aerodynamic(F0:Fundamental frequency, intensity, MFR: Mean flow late, Psub: Subglottal pressure) measurement. The results were as follows: (1) Normal group was significantly higher in MIP, MEP, MPT than two SD groups (p < .05); (2) MPT was significantly lower in SD with non-Botulinum toxin injection group than SD with the treatment experience of Botulinum toxin injection (p < .05); (3) All aerodynamic parameters, F0, intensity, MFR, Psub, were not significantly different among three groups(p > .05).The reason of short MPT in ADSD may use lower respiratory pressure than normal group as strategy to decrease their tremulous voice quality. Moreover respiratory muscle pressure was lower than normal group regardless of botulinum toxin injection treatment.

  • PDF

An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure (분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구)

  • Jeong, Y.H.;Yang, J.W.;Oh, C.H.;Lim, O.T.
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.