• Title/Summary/Keyword: Injection molding process

Search Result 903, Processing Time 0.047 seconds

Flow Analysis for an Effective Weld Line Control in Injection Molding (효과적인 웰드라인 제어를 위한 사출성형 유동해석)

  • 김현필;김용조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.64-72
    • /
    • 2001
  • Weld line is one of serious troubles which are observed in a plastic part manufactured by a injection molding process. This is caused by many process factors, which are molding pressure, temperature, velocity, location of a injection gate, mold geometry and material properties. investigation on the effects of these process factors to the appearance of a weld line was carried out using a finite element method. Filling and packing analyses were carried out by modifying both the configuration of the injection gates and cavity thickness. Proper locations of the injection gates could be determined by considering molding pressure, temperature, velocity and frozen layer, and whereby the weld line was controled. In order to make a weak appearance of the weld line, flow velocity and flow front in a cavity were also investigated by modifying a cavity thickness. As a result, flow front was extended around the corner in the cavity by changing the flow velocity and hence the appearance of the weld line was much weakened.

  • PDF

A Study on The Reduction of Cycle Time in Injection Molding Process of The Monitor Backcover (Monitor Backcover의 사이클 타임 단축에 관한 연구)

  • Yoon K. H.;Kim J. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.368-374
    • /
    • 2005
  • In the present study we used a diagrammatic analysis of 6 sigma quality control and Taguchi method for injection molding of monitor back-cover, evaluated the influence on the cycle time with part design, mold design, molding process and standardization activity involving design and molding, adopted analysis of sensitivity and effective factors of the part design and molding process conditions for productivity, identified main design molding factors. The contributing factors for the final cycle time could be enumerated as follows; the thickness of hot spot, main nominal part thickness, coolant inlet temperature, melt temperature and cooling line layout, etc.. As a first step, all the critical factors of design process applied to the current monitor housing were investigated through 6 sigma process. Thereafter, the optimal and better critical factors found in the first step were applied to new product design to prove that our process was correct. The Moldflow was used for injection molding simulation, and Minitab software for the statistical analysis, respectively. Finally, the productivity of new design was increased about 33 percents for our specific case.

A Study on The Reduction of Cycle Time in Injection Molding Process of The Monitor Backcover (Monitor backcover의 사출시간 단축에 관한 연구)

  • Kim J. K.;Kim J. S.;Yoon K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.269-272
    • /
    • 2004
  • The present study used a diagrammatic analysis of 6 sigma quality control and Taguchi method for injection molding process of monitor back-cover, evaluated the influence on the cycle time with part design, mold design, molding process and standardization activity involving design & molding, adopted analysis of sensitivity and effective factors of the part design and molding process conditions for productivity, identified main design molding factors, as critical ones influencing on the quality and productivity, of which is summarized as design guidance. The main contribution factors for cycle time can be sequentially enumerated as follows; hot spot, part thickness, coolant inlet temperature, melt temperature cooling line layout, etc.. As a first step critical factors of the design process of current monitor housing were investigated. And the optimal and better critical factors found in the first step were applied to a new product proving our process was correct. Moldflow software was used for injection molding simulation, and Minitab software for the statistical analysis. Finally, the productivity was increased by about 33 percents for our specific case.

  • PDF

The Behavior of Shrinkage on PMMA in Injection Compression Molding (사출압축성형시 PMMA 재료의 성형수축거동)

  • Choi Y.S.;Kang C.M.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.589-592
    • /
    • 2005
  • Molding shrinkage s variation is one of the problems to be solved in conventional injection molding. Despite many trying-out has been to solve these, intrinsic causes of shrinkage such as orientation and thermal exchange between melt and mold has yet not solved. For reducing shrinkage and residual stress on molding, injection compression molding process was invented. In this study, experiments about effect of injection compression molding's parameters on shrinkage of molding were conducted with PMMA and compared with conventional injection molding's shrinkage. Before the injection compression molding experiment, molding shrinkage rate was predicted by analyzing pvT graph and was compared with the results of experiment. The shrinkage rate of injection compression molding was lower than convention injection molding' one but was different from the predicted shrinkage. The reason was observed that experiment mold as not positive type, flowing backward of melt into nozzle and unreasonable mechanism of injection molding machine.

  • PDF

Numerical Analysis of Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (II) - Effects of Processing Conditions - (사출/압축 성형 Center-gated 터스크에서의 잔류 응력과 복굴절의 수치 해석 (II) - 공정조건의 영향 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2355-2363
    • /
    • 2002
  • The accompanying paper, Part 1, has presented the physical modeling and basic numerical analysis results of both the flow-induced and thermally-induced residual stress and birefringence in injection molded center gated disks. The present paper, Part II, has attempted to investigate the effects of various processing conditions of injection/compression molding process on the residual stress and birefringence. The birefringence is significantly affected by injection melt temperature, packing pressure and packing time. Birefringence in the shell layer increases as melt temperature gets lower. The inner peak of birefringence increases with packing time and packing pressure. On the other hand, packing pressure, packing time and mold wall temperature affect the thermally-induced residual stress rather significantly in the shell layer, but insignificantly in the core region. Injection/compression molding has been found to reduce the birefringence in comparison with the conventional injection molding process. In particular, mold closing velocity and initial opening thickness in the compression stage of injection/compression molding process have significant effect on the flow-induced birefringence, but not on tile thermal residual stress and the thermally induced birefringence.

Injection molding using porous nano-scale patterned master with Pettier devices (펠티어 소자를 이용한 다공성 나노패턴의 사출에 대한 연구)

  • Hong, N.P.;Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.513-516
    • /
    • 2008
  • We have replicated nanopillar arrays using injection molding process of active heating and cooling method by several peltier devices. The injection melding has a high accuracy ed good reproducibility that are essential for mass production at low cost. Conventional molding processes widely use the water-based mold heating and air cooling methods. However, in case of replication for nano-patterned structures, it caused several defects such as air-flow mark, non-fill, sticking and tearing. In this study, periodic nano-scale patterns are replicated by using injection molding with Peltier devices. Porous nano-scale patterns, which have pore diameter range from 120nm to 150nm, were fabricated by using anodizing process. Periodic nano-pore structures ( $20mm\;{\times}\;20mm$) were used as a mold stamp of injection molding. Finally, PMMA with nanopillar arrays was obtained by injection molding process. By using the Peltier devices, the temperature of locally adiabatic molds can be dramatically controlled and the quality of the molded patterns can be slightly improved.

  • PDF

Evaluation of Formability Dependent on the Location of Injection Gate of Vertical Machining Center ATC Tool Port Using Injection Molding Analysis (사출성형해석을 이용한 수직머시닝센터 ATC 툴 포트의 사출 게이트 위치에 따른 성형성 평가)

  • Lee, Yu-Wool;Park, Chul-Woo;Kim, Jin-Rok;Choi, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.129-135
    • /
    • 2021
  • Injection molding is a manufacturing method of melting the polymer resin and injecting it into a mold to molding it into the desired form. Due to the short molding time and outstanding formability, complex products can be shaped with high precision and it is the most widely used polymer molding method. However, there may be areas that are not filled depending on the location of the injection gate where polymer resin is injected. Formability is determined by deformation and surface precision due to the impact of residual stress after molding. Hence, choosing the location of the injection gate is very important and molding analysis of injection molding is essential to reduce the cost of the mold. This study evaluated the injection formability based on the location of the injection gate of the vertical machining center ATC tool port using injection molding analysis and the results were compared and analyzed. Injection molding analysis was conducted on filling, packing, and deformation according to the location of the gate of the ATC tool port. From each injection gate location, filling time, pressure, and maximum deformation were compared. At gate 2, conditions of molding time and the location of the gate were far superior in production and quality. Gate 2 produced the smallest deformation of 0.779mm with the best quality.

COUPLED ANALYSIS OF INJECTION MOLDING AND FILM FORMING FOR IDENTIFYING FILM DEFORMATION IN IMD PROCESS (IMD 공정 중 필름 변형 특성 파악을 위한 사출 및 필름성형 간 연계해석)

  • Yoon, J.H.;Hur, N.;Bae, A.H.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.20-25
    • /
    • 2013
  • In various manufacturing industries, an in-mold decoration (IMD) process for plastic objects is widely utilized because a film forming and an injection molding processes run simultaneously. In the present study, the deformation of polymer film and filling of resin in the IMD process were numerically investigated to evaluate the quality of the plastic object formed by the IMD process, which consists of thermoforming and injection molding processes. To obtain the initial shape of the polymer film during the injection molding process, the deformation of the polymer film in the thermoforming process was pre-formed using the vacuum conditions to attach the film to a cavity. Since the properties and deformation of polymer film are greatly affected by the behavior of polymer resin being injected into a mold cavity, numerical simulations for the injection molding and film forming were performed with one-way coupling method. The results showed that the injected resin could lead to the tearing of the polymer film in local regions near the corners. In order to verify the proposed numerical methodology, the numerical results of the deformation patterns printed on the initial polymer film were compared with the experimental data. The proposed methodology to couple film forming analysis with injection molding analysis can be used to predict the deformation of film in IMD process.

Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena (항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석)

  • 박주배;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1465-1477
    • /
    • 1993
  • Powder Injection Molding(PM) is an advanced and complicated technology for manufacturing ceramic or metal products making use of a conventional injection molding process, which is generally used for plastic products. Among many technologies involved in the successful PIM, injection molding process is one of the key steps to form a desired shape out of powder/binder mixtures. Thus, it is of great importance to have a numerical tool to predict the powder injection molding filling process. In this regard, a finite element analysis system has been developed for numerical simulations of filling process of powder injection molding. Powder/polymer mixtures during the filling pro cess of injection molding can be rheologically characterized as Non-Newtonian fluids with a so called yield phenomena and have a peculiar feature of apparent slip phenomena on the wall boundaries surrounding mold cavity. Therefore, in the present study, a physical modeling of the filling process of powder/polymer mixtures was developed to take into account both the yield stress and slip phenomena and a finite element formulation was developed accordingly. The numerical analysis scheme for filling simulation is accomplished by combining a finite element method with control volume technique to simulate the movement of flow front and a finite difference method to calculate the temperature distribution. The present study presents the modeling, numerical scheme and some numerical analysis results showing the effect of the yield stress and slip phenomena.

A study on searching method of molding condition to control the thickness reduction of optical lens in plastic injection molding process (플라스틱 광학렌즈 사출성형에 있어서 수축 변형량 예측을 위한 사출성형 조건 탐색에 관한 연구)

  • 곽태수;오오모리히토시;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2004
  • In the injection molding of plastic optical lenses, the molding conditions have critical effects on the quality of the molded lenses. Since there are many molding parameters involved in injection molding process, determination of the molding conditions for lens molding is very important in order to precisely control the surface contours of an optical lens. Therefore this paper presents the application of neural network in suggesting the optimized molding conditions for improving the quality of molded parts based on data of FE Analysis carried out through CAE software, Timon-3D. Suggested model in this paper, which serves to learn from the data of FE Analysis and induce the values for optimized molding conditions. has been implemented for searching the molding conditions without void and with minimized thickness shrinkage at lens center of injection molding optical lens. As the result of this study. we have confirmed that void creation at the inside of lens is primarily determined by mold temperature and thickness shrinkage at center of lens is primarily determined by the parameters such as holding pressure and mold temperature.