• Title/Summary/Keyword: Injection molding analysis

Search Result 526, Processing Time 0.02 seconds

Study on numerical analysis and experiment of the injection/ blow molding of a preform of PET Bottle (페트용기 성형을 위한 프리폼 사출성형 및 블로우 성형의 실험 및 해석에 관한 연구)

  • Kim, Jeong-Soon;Kim, Jong-Deok;Kim, Ok-Rae;Kwon, Chang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1119-1124
    • /
    • 2008
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, a three dimensional model has been introduced for the purpose and flow simulations of filling, post-filling and cooling process are carried out. The simulations resulted in the warpage in good agreement with the measurements. Also, from the result of numerical analysis, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

Effects of holding pressure affecting cooling time in injection molding (사출성형시 보압이 냉각시간에 미치는 영향)

  • Mun, Yeong-Bae;Choi, Yun-Sik;Jung, Yeong-Deuk
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • There occur not only many problems in the injection process but also low quality productivity due to the injection conditions of various injection factors. Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for the holding pressure affecting cooling time. Results of this study would be helpful to setting of holding pressure for optimization of forming condition in order to reduce cooling time in injection molding.

  • PDF

Analysis of Cavity Pressure and Dimension of Molded Part According to V/P Switchover Position in Injection Molding

  • Cho, Jung Hwan;Kwon, Soon Yong;Roh, Hyung Jin;Cho, Sung Hwan;Kim, Su Yeon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • In injection molding, the quality of an injection molded product varies greatly depending on the molding conditions. Many researche studies have been conducted on the quality analysis of molded parts according to the molding conditions such as injection pressure, injection temperature, and packing pressure. However, there have not been many studies on the V/P switchover timing. It is known that when a large pressure is applied to a cavity in the packing phase, the cavity pressure is most affected by the packing pressure. In addition, depending on the position (timing) of the packing pressure, it can have a direct influence on quality based on the shrinkage and dimensions of the molded parts. In this study, the change in pressure profile in the cavity according to the V/P switchover position is confirmed. A CAE analysis program (Moldflow) was used to simulate and analyze two models using the PC and PBT materials. In order to compare these results with the actual injection molding results, injection molding was performed for each V/P switchover position, and the correlation between simulation and experiment, especially for the shrinkage of molded parts, was evaluated.

Manufacturing and Molding Technology of $500{\mu}m$ 8Cavity Injection Molding System (500um급 8캐비티 사출금형설계 제작 및 성형기술)

  • Lee, S.H.;Cho, K.H.;Lee, J.W.;Ko, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.444-447
    • /
    • 2008
  • Recently, the need of thin-walled injection molding and enhancement of its productivity is greatly increased. In this study, we designed and manufactured a injection molding system, which can mold a part with the thickness of $500{\mu}m$ and 8 cavity. And processing technique for the multi-cavity injection molding system, which is capable of mass productivity on the plastic parts, was considered. The problems of unbalance/imbalance on the molding process for the multi-cavity mold were predicted by numerical analysis using plastic injection molding commercial code. In addition, controllable system of melt front filling was introduced for a balanced filling using the mold temperature sensor on injection mold. It was shown that balanced filling with the suggested injection molding system was possible for $500{\mu}m$ plastic parts with 8 cavity layout.

  • PDF

A Study on the Low Pressure Injection Molding of Automotive Seat-back Cover (자동차용 시트백 커버의 저압사출성형에 관한 연구)

  • Ko, Byung-Doo;Ham, Kyoung-Chun;Jang, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.100-106
    • /
    • 2008
  • In this paper, the injection molding process of automotive seat-back cover is analyzed in terms of simulation and of experiment. FE analysis was used to obtain molding conditions such as injection pressure, filling pattern, packing, shrinkage. Vacuum system for low pressure injection molding is developed in the experiment. Low pressure injection molded parts have been compared with conventional molded parts in terms of molding quality and mechanical properties. Based on the results, good product and the productivity improvement can be obtained in low pressure injection molding for automotive seat-back cover.

Injection Molding Analysis for Narrow-Pitched FPC Connectors (협 피치 FPC 커넥터의 사출 성형 해석)

  • Yoon, Seon-Jin;Heo, Young-Moo;Han, Mu-kun;Jung, Min-young;Kang, Woo-Seung
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • The narrow-pitched connectors are of interest for small-scale devices such as smart phones because of theirs caling. We conducted an injection molding analysis and a warp analysis for 0.3mm and 0.5mm pitch FPC connectors. We obtained a volumetric shrinkage of 4.344%, a clamping force of 0.2529 tonne, a maximum injection pressure of 76.3 MPa as optimized molding conditions for the 0.3mm pitch FPC connector. We found that, compared with the traditional injection molding technique, the injection molding for narrow-pitched connectors comes with distinct features like low clamping force, high injection molding pressure, and narrow gate size. Adding to the optimization analysis, the deflection of 0.5mm pitch FPC connector was analyzed as well. A maximum deflection of 0.053mm was calculated, which the actual deflection of 0.062mm was compared to. The results deduced a relative error of 17%. We conclude that the deflection analysis along with the optimization analysis can be used as an effective tool to predict the behavior of narrow-pitch connectors although the relative error may need to improve.

  • PDF

A study on searching method of molding condition to control the thickness reduction of optical lens in plastic injection molding process (플라스틱 광학렌즈 사출성형에 있어서 수축 변형량 예측을 위한 사출성형 조건 탐색에 관한 연구)

  • 곽태수;오오모리히토시;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2004
  • In the injection molding of plastic optical lenses, the molding conditions have critical effects on the quality of the molded lenses. Since there are many molding parameters involved in injection molding process, determination of the molding conditions for lens molding is very important in order to precisely control the surface contours of an optical lens. Therefore this paper presents the application of neural network in suggesting the optimized molding conditions for improving the quality of molded parts based on data of FE Analysis carried out through CAE software, Timon-3D. Suggested model in this paper, which serves to learn from the data of FE Analysis and induce the values for optimized molding conditions. has been implemented for searching the molding conditions without void and with minimized thickness shrinkage at lens center of injection molding optical lens. As the result of this study. we have confirmed that void creation at the inside of lens is primarily determined by mold temperature and thickness shrinkage at center of lens is primarily determined by the parameters such as holding pressure and mold temperature.

Finite Element Analysis for Wavelike Flow Marks in Injection Molding

  • Kang, Sung-Yong;Lee, Woo-Il
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.27-32
    • /
    • 2003
  • The wavelike flow mark phenomenon is one of the surface defects that can arise during the injection stage of the injection molding process. We have performed a numerical analysis using a finite element method for the injection molding to verify the validity of 'Go-over' hypothesis. Also, we have compared the results of numerical analysis with available experimental data. Numerical analysis results of the flow marks are qualitatively in good agreement with experimental data of reference, but are quantitatively deviated from experimental data in a consistent manner. A parametric study has been performed to examine the correlative effects of various injection molding processing parameters and material properties on the flow mark size.

  • PDF

Finite Element Analysis for Wave-like Flow Marks in Injection Molding (사출성형 공정 중 물결 무늬에 대한 유한요소 해석)

  • S. Y Kang;Lee, W. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.474-480
    • /
    • 2003
  • The wavelike flow mark phenomenon is one of the surface defects that can arise during the injection stage of the injection molding process. We have performed a numerical analysis using a finite element method for the injection molding to verify the validity of “Go-over” hypothesis. Also, we have compared the results of numerical analysis with available experimental data. Numerical analysis results of the flow marks are qualitatively in good agreement with experimental data of reference, but are quantitatively deviated from experimental data in a consistent manner. A parametric study has been performed to examine the correlative effects of various injection molding processing parameters and material properties on the flow mark size.

  • PDF

Development of Analysis Model for Characteristics Study of Fluid Power Systems in Injection Molding Machine (사출성형기 유압시스템의 특성 검토를 위한 해석 모델 개발)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • Injection molding machine is the assembly of many kinds of mechanical and fluid power part and electro-electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of injection molding machine are modelled and analyzed using a commercial program AMESim. The analysis model which is detailed about the parts applied a publishing catalog data. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like displacement, pressure, flow rates at each node and so on. Total fluid power circuit model is also made and analyzed. The results made by analysis will be used design of fluid power circuit of injection molding machine.