• 제목/요약/키워드: Injection Timing

검색결과 434건 처리시간 0.027초

연소제어인자의 변화에 따른 직접분사식 초희박 LPG엔진의 연소특성 연구 (Study of Combustion Characteristics with Variations of Combustion Parameter in Ultra-Lean LPG Direct Injection Engine)

  • 박윤서;박철웅;오승묵;김태영;최영;이용규
    • 대한기계학회논문집B
    • /
    • 제37권6호
    • /
    • pp.607-614
    • /
    • 2013
  • 오늘날 전 세계의 자동차 회사들은 연비를 향상시키고 배기가스를 저감시키기 위해 다양한 기술을 개발하고 있다. 그 중 직접분사식 초희박 연소기술은 연료제어의 정확도를 향상시켜 연소 효율을 극대화하고 초희박 연소를 통해 연비를 향상 시킬 수 있는 차세대 기술로 평가받고 있다. 따라서 기존 가스엔진에 초희박 직접분사 기술을 적용한 초희박 LPG 직접분사 엔진을 개발하기 위해 $2{\ell}$ 급 MPI 엔진을 베이스 엔진으로 실린더 헤드를 재설계하였다. 재설계된 헤드는 초희박 연소를 구현하기 위해 인젝터와 점화플러그가 헤드 중앙에 장착되는 분무유도방식 연소시스템을 적용하였다. 연료 분사 압력별 연료 분사 시기와 점화 시기의 변경을 통해 연료 소비율과 연소 안정성을 측정하였으며 이를 통해 최적연료 분사시기와 점화시기를 선정하였다.

DPF 재생을 위한 연료 후분사 전략에 대한 연구 (Research on Post Injection for Diesel Particulate Filter Regeneration)

  • 최민후;윤성준;박성욱
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Recently, as the interest in environmental issues have increased around the world, the regulation on vehicle exhaust have been tightened in each country. To satisfy such tightened exhaust regulation, automotive manufactures are forced to equipped Diesel Particulate Filter (DPF) at Diesel vehicles. If DPF is used for a long time, DPF regeneration should be performed. The objective of this study is to research on post injection for DPF regeneration. The result of the study was that it was desired that retarding post injection timing, lower load of engine and smaller the amount of main fuel injection, for DPF regeneration. Oil dilution was tended to increase as load was lower, amount of post injection was increased, and post injection timing was retarded.

급속 압축팽창 장치를 이용한 직접분사식 가솔린 기관의 실린더 내 분무 및 연소특성에 관한 연구 (A Study on In-cylinder and Combustion Characteristics of GDI Engine using RCEM)

  • 조규백;정용일
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.76-85
    • /
    • 1999
  • GDI(Gasoline Direct Injection( engine technology is well known as a new technology since it can improve fuel consumption and meet future emission regulations. But the GDI has many difficulties to be solved, such as complexity of injection control mode, unburned hydrocarbon, and restricted power. A 2-D shape combustion chamber was adopted to investigate mixture formation and combustion characteristics of GDI engine. Spray and combustion experiments were performed by changing the injection timing. injection pressure an din-cylinder flow in Rapid Compression and Expansion Machine(RCEM).Through the experiments, the detailed characteristics of fuel spray and combustion was analyzed by visualizing the in-cylinder phenomena according to the change of injection condition, and the optimal fuel injection timing and fuel injection pressure were obtained.

  • PDF

직접분사식 압축착화엔진에서 Pilot분사에 따른 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구 (A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels Using Pilot Injection in DICI Engine)

  • 정재훈;임옥택
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.55-64
    • /
    • 2014
  • This work was investigated on pilot injection strategy of blended fuels(Diesel-DME) for combustion and emissions in a single cylinder direct injection compression ignition engine. Diesel and DME were blended by the method of weight ratio. Weight ratios for diesel and DME were 95:05 and 90:10 respectively. dSOI between main and pilot injection timing was varied. A total amount of injected fuels(single injection) was adjusted to obtain the fixed BMEP as 4.2 bar in order to compare with the fuel conditions. Also, the amount of pilot injection fuel was varied by 5%, 10% and 20% of total injection fuel. The engine was equipped with common rail and injection pressure is 700 bar at 1200 rpm. As a result, when mixing ratio increase, indicated thermal efficiency was increased in comparison with DD 100 and CO, THC and smoke were lower than DD 100. The influence of reducing NOx by pilot injection was more effective than DD 100. When pilot injection quantity increase, abrupt increase of NOx was occured at pilot injection quantity of 20%.

직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구 (A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine)

  • 인병덕;박상기;이기형
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.

전자유압식 분사계를 갖는 D.I. 디젤기관의 분사 및 연소에 관한 연구 (A Study on Injection and Combustion of D.I. Diesel Engine with Electronic-hydraulic Fuel Injection System)

  • 김현구;라진홍;안수길
    • 수산해양교육연구
    • /
    • 제9권1호
    • /
    • pp.83-97
    • /
    • 1997
  • Diesel engine is widely used for ship and industry source of power because of its high thermal efficiency and reliability and durability. However it lead to air pollution due to exhaust gas, and it is important to develop diesel engine of lower air-pollution to decrease the hazardous exhaust gas emissions. As one of the ways, the study for practically using the high pressure of fuel injection and variable injection timing system is being processing. The high pressure injection, which is said to be an effective means for reducing both NOx and particulate emissions, and great improvements in combustion characteristics have been reported by many researchers. In this study, electronic-hydraulic fuel injection system and hydraulic fuel injector system have been applied to the D.I. test engine for high pressure injection and variable injection timing. The injection pressure and injection rate depending upon accumulator pressure were measured with strain gage and Bosch injection rate measuring system before fitting the system into test engine, and analyzed the characteristics of the injection system. The combustion characteristics with this injection system has been analyzed with data concerning heat release rate, pressure rising rate, ignition point, ignition delay and maximum pressure value.

  • PDF

예혼합 압축착화 엔진의 혼합기 형성 및 연소 특성에 관한 연구 (A Study on the Characteristics of Mixture Formation and Combustion in the Premixed Charge Compression Ignition Engine)

  • 김형민;류재덕;이기형
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.1-9
    • /
    • 2006
  • Recently, there has been an interest in premixed diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to conventional diesel engines. Because this concept reduced NOx and smoke emissions simultaneously. Early studies are shown that in a HCCI(Homogeneous Charge Compression Ignition) engine, the fuel injection timing and intake air temperature affect the mixture formation. The purpose of this study is to investigate characteristics of combustion and mixture formation according to injection timing and intake air temperature in a common rail direct injection type HCCI engine using an early injection method called the PCCI(Premixed Charge Compression Ignition). From this study, we found that the fuel injection timing and intake air temperature affect the mixture formation and in turn affects combustion in the PCCI engine.

EXPERIMENTAL STUDY ON THE FLOW AND MIXTURE DISTIBUTION IN A VISUALIZATION ENGINE USING DIGITAL PARTICLE IMAGE VELOCIMETRY AND ENTROPY ANALYSIS

  • Lee, K.H.;Lee, C.H.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.127-135
    • /
    • 2007
  • The objective of this study is to analyze the effect of velocity and vorticity on stratified mixture formation in the visualization engine. In order to investigate spray behavior, the pray velocity is obtained through the cross-correlation PIV method, a useful optical diagnostics technology and the vorticity calculated from the spray velocity component. These results elucidated the relationship between vorticity and entropy, which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion ate of spray using entropy analysis based on Boltzmann's statistical thermodynamics. Using these methods, we discovered that the homogeneous mixture distribution is more effective as a momentum dissipation of surrounding air than that of the spray concentration with a change in the injection timing. We found that the homogenous diffusion rate increased as the injection timing moved to the early intake stroke process, and BTDC $60^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.

직접분사식 가솔린 엔진에서 분사시기와 흡입유동이 실린더 내 연료의 거동에 미치는 영향 (Effects of Injection Timing and Intake Flow on In-Cylinder Fuel Behavior in a GDI Engine)

  • 이정훈;강정중;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.7-13
    • /
    • 2003
  • The purpose of this study is to investigate the effect of the in-cylinder flows and different injection timings on fuel behavior in the cylinder of a GDI engine. Three different flows types induced by using masked port, unmasked port, and port deactivation were tumble, swirl&tumble, and high swirl respectively. LIEF technique was applied to investigate the mixture formation and fuel distribution at ignition time in the transparent engine with optical access through the piston top and upper part of cylinder liner. Injection timings of 180,90, and 60 degrees before TDC were examined. It was found that tumble flow was more effective on the homogeneous mixture formation than other flow and swirl flow transported more fuel vapor to the exhaust side at early injection mode, and swirl and swirl & tumble flow made fuel vapor concentrate around the cylinder center at late injection mode.

반응 표면법을 이용한 2 단 분사 PCCI 디젤엔진의 운전조건의 영향도 평가에 대한 연구 (Effects of optimal operating conditions on 2-stage injection PCCI diesel engine using Response Surface Methodology)

  • 이재현;김형민;이기형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3044-3048
    • /
    • 2008
  • It is well known that Premixed Charge Compression Ignition (PCCI) diesel engines according to many technologies such a change in injection timing, multiple injection strategy, cooled EGR, intake charging and SCV have the potential to achieve homogeneous mixture in the cylinder which result in lower NOx and PM as well as performance improvements. This may generate merely the infinite number of experimental conditions. The use of Response Surface Methodology (RSM) technique can considerably pull down the number of experimental set and time demand. This paper presents the effects of both fuel injection and engine operation conditions on the combustion and emissions in the PCCI diesel engine system. The experimental results have revealed that a change in fuel injection timing and multiple injection strategy along with various operating conditions affect the combustion, emissions and BSFC characteristics in the PCCI engine.

  • PDF