• Title/Summary/Keyword: Injection Time

Search Result 2,735, Processing Time 0.03 seconds

Determination of Molding Conditions of Double-Shot Injection Mold for the Computer Mouse via Three-Dimensional Injection Molding Analysis (3 차원 사출성형 해석을 통한 컴퓨터 마우스 제작용 이중사출성형 금형의 공정조건 결정)

  • Ahn, Dong-Gyu;Park, Min-Woo;Park, Jeong-Woo;Kim, Hyung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1619-1625
    • /
    • 2011
  • The objective of this study determine the molding conditions of a double-shot injection mold for fabricating a computer mouse using different materials, by performing three-dimensional injection molding analysis. In order to select the optical injection molding conditions, the effects of the injection time, the maximum injection pressure, the effect of packing time on the injection molding characteristics, and the product qualities were quantitatively examined. From the results of the injection molding analysis, the optimal injection molding conditions of the double-shot injection mold, which leads the molded product to the minimized shrinkage and deflection, were estimated. The results of the injection molding experiments, showed that an appropriate computer mouse can be fabricated using different materials when the identified optimal injection molding conditions are adopted.

Simulation of Combustion Phenomena at Multiple Injection in HSDI Diesel Engine Using Modified Two Dimensional Flamelet Combustion Model (개량된 2 차원 화염편 연소 모델을 이용한 고속 직분식 엔진에서의 다단 분사시 연소 현상 해석)

  • Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3300-3305
    • /
    • 2007
  • Ignition delay of second injection of HSDI diesel engine was usually much shorter than that of first injection. It is due to the interaction between radicals generated during the combustion process, and mixed gas of second injection. In this paper, To analyze combustion phenomena of multiple injection mode in HSDI diesel engine effectively, two-dimensional flamelet combustion model was modified. To reduce calculation time, two-dimensional flamelet equations were only applied near stoichiometric region. If this region was ignited, species and temperature of other region were changed to the steady-state solutions of one dimensional flamelet equations. By this method calculation time for solving flamelet equations was reduced to 20 percents, thought the results were almost same. Modified flamelet combustion model was coupled to commercial CFD code interactively using user subroutine.

  • PDF

Development of the Injection Molded Ball Seat for Automobile Suspension (자동차 서스펜션용 볼 시트 사출성형품 개발)

  • Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.50-56
    • /
    • 2011
  • Injection molding process is one of the popular manufacturing methods to produce plastic parts with high efficiency and low cost. Ball seat for automobile suspension is made by an injection molding process as a part to support pivot function of ball joint consisted of ball stud and housing. It is necessary for a ball seat to have a dimensional stability in the three dimensional inner area to be contacted with ball stud. In this paper, the dimensional stability of inner surface is indirectly analyzed by checking the difference of inner diameter around the circumferential direction and the thickness variation at the top part of ball seat. Measurement was performed by using the coordinate measuring machine and the fixture to hold ball seat. Optimization of injection molding processes such as injection time, cooling time and temperatures of cylinder barrel was derived to reduce the difference of inner diameter and the thickness variation at the top part of ball seat based on the Taguchi method.

Cycle Time Reduction with Automated Gate Cutting Mechanism and Injection/Compression Molding for Producing Mobile LGP (모바일용 도광판의 게이트 자동절삭 및 사출/압축 성형법을 적용한 사이클 타임 저감에 관한 연구)

  • Min, I.K.;Kim, J.S.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.96-100
    • /
    • 2012
  • Conventional injection molding system for producing extremely thin-wall parts such as Light Guide Plates(LGP's) for mobile displays is at the limit of its capability due to its tendency to develop frozen layers and the critical speed of injection. The molten polymer in the cavity freezes quickly as its heat is rapidly transferred to the mold base. Many attempts have been tried in the past to overcome this problem. The present study used the injection/compression molding technology to produce a thin-wall part, with enhanced features such as an automated mechanism for cutting gates. As a result, the total cycle time was reduced by almost 35 seconds, resulting in a productivity increase by 30%.

A Study on the Unified Molding of a Portable Cosmetic Chest Using Gas-Assisted Injection Molding (가스사출성형을 이용한 휴대용 화장품 보관함의 일체화 성형 연구)

  • Lee, Ho-Sang;Ryu, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.772-777
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

Analyses on Deformation Patterns Depending on the Injection Process for Rear Lamp Reflectors of Automotive (자동차 리어램프 반사판의 사출공정에 따른 변형 패턴 분석)

  • Choi, Hyun-Jin;Park, Chul-Woo;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.32-37
    • /
    • 2010
  • One of the most common engineering processes using plastics is the injection molding. In addition, plastics are utilized over the entire areas in our life including cars and home appliances among others for their characteristics with no deterioration even after a long time, as well as for their light weights in addition to their good durability. This paper aimed to minimize defects through prior analyses on the weld line, air traps, filling time, molding temperature and deformation patterns among others while carrying out interpretations on the cooling, filling and deformation in the injection process using the moldflow for rear lamp reflectors among components for a car in making parts through the coating process after injection.

A study on the motorcycle lear cowl injection molding by CAE analysis (CAE 해석을 이용한 오토바이 리어카울 사출성형에 관한 연구)

  • Sung, Si-Myung;Jung, Sang-Jun
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.34-39
    • /
    • 2019
  • In this paper, in order to improve the formability and quality of the injection molded parts in the molds for molding the motorcycle rear cowl injection molded parts with different volumes at the same time, the flow of the molded parts is changed through the injection molding CAE analysis by changing the gate position, runner size and position. It is to find the optimum gate position, the diameter of the runner and the position where the balance is equal. The molded article formed by the optimization resulted in the uniformity of the molten resin at the same time at the corner of the product, thereby maintaining the flow balance favorable for mass production at lower injection pressure.

An analysis on the injection mold simulation of single cushion pact cosmetic container for the friendly-environment and high productivity (친환경 고생산성을 위한 단일 쿠션 팩트 내 화장품 용기의 사출 시뮬레이션 분석)

  • Jung, Sung-Taek;Kim, Seong-Hyun;Kim, Hyun-Jeong;Lee, Joong-Bae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.51-56
    • /
    • 2018
  • Generally, The women was used in the cosmetic cushion fact. It has developed with the consideration of manufacturing. In this study, we designed green-friendly and element parts lower and single cushion fact containers using a single material. Injection mold simulation were performed using on 3D design data. The injection mold simulation used the data (Injection time / Cooling time / Temperature / Pressure) in the injection mold parameters. In addition, the sink mark phenomenon in the simulation results is analyzed as a problem due to the thickness and further research is needed in the future.

A Study on the Unified Molding for a Box Shaped Thick Part Using Gas-Assisted Injection Molding (가스사출성형을 이용한 두꺼운 박스형 제품의 일체화 성형 연구)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

A Study on Injection Molding Analysis and Validation of Large Injection-Molded Body Using Design of Experiment (실험계획법을 이용한 대형 사출물의 사출성형 해석과 검증에 관한 연구)

  • Lee Hyoung-soo;Lee Hi-Koan;Yang Gyun-eui
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.109-114
    • /
    • 2005
  • The large injection molded parts technology such as instrument panel, front and rear bumper are presented for a precision molding. Some lead time and cost are required to product these part from design to mass product. Recently, CAE is widely used in product design, mold design and analysis of molding conditions to reduce time and cost. The optimal molding conditions can be obtained by DOE(Design of Experiment). The optimal design applications with CAE and DOE have been used in small molded parts. However, application to the large molded body is not reported. In this paper, optimization of injection molding process is studied for quality control in mass production of automobile bumper. Mold temperature difference is chosen through robust design of injection molding process, the molding process being optimized in term of shrinkage and deflection. The optimal conditions through DOE are validated by using injection molding analysis.

  • PDF