• Title/Summary/Keyword: Injection Ratio

Search Result 1,569, Processing Time 0.03 seconds

CFD Simulation of SMD Distribution of Diesel Sprays Injected from a Common Rail Injector According to Compression Ratio of Combustion Chamber (커먼레일 인젝터로부터 분사되는 디젤 분무의 연소실 압축비 변화에 따른 SMD 분포의 CFD 시뮬레이션)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • A diesel spray overall SMD (Sauter mean diameter) in a spray chamber was simulated with CFD by varying the compression ratio in the spray chamber from 18:1 to 100:1. The gas densities of the spray chambers for the compression ratios of 18:1 and 100:1 were 17.97 and $74.8kg/m^3$, respectively. Standard KIVA-3V code was used for the CFD simulation. Various fuel injection patterns such as single injection, pilot injection and split injection were used for the CFD simulation. Fuel injection pressures for the simulated diesel sprays are 90 and 120 MPa. As the compression ratio increases, the CFD simulated SMD was decreased, which was generally in agreement with previous experimental studies.

A Study on the Effect of Fuel Injection System on D. I. Diesel Engine (직접분사식 디젤기관의 성능에 미치는 연료 분사계의 영향에 관한 연구)

  • 윤천한;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozzle hole, diameters of an injection pipe, and injection timing in the fuel injection system. We have obtained the results that the fuel consumption ratio is reduced and NOx concentration is increased as the smaller diameter of injection nozz1e hole, the smaller diameter of injection pipe, and more advanced injection timing. They show that optimizing the factors of fuel injection system is significant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

Comparison of Combustion Characteristics with Combustion Strategy and Excess Air Ratio Change in a Lean-burn LPG Direct Injection Engine (직접분사식 LPG 엔진의 연소전략 및 공기과잉률 변화에 따른 연소특성 비교)

  • Cho, Seehyeon;Park, Cheolwoong;Oh, Seungmook;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.96-103
    • /
    • 2014
  • Liquefied Petroleum Gas(LPG) has attracted attention as a alternative fuel. The lean-burn LPG direct injection engine is a promising technology because it has an advantage of lower harmful emissions. This study aims to investigate the effect of combustion strategy and excess air ratio on combustion and emission characteristics in lean-burn LPG direct injection engine. Fuel consumption and combustion stability were measured with change of the ignition timing and injection timing at various air/fuel ratio conditions. The lean combustion characteristics were evaluated as a function of the excess air ratio with the single injection and multiple injection strategy. Furthermore, the feasibility of lean operation with stratified mixture was assessed when comparing the combustion and emission characteristics with premixed lean combustion.

An Experimental Study on the Combustion and Emission Characteristics According to the Variation of Compression Ratio and Intake Temperature Using Stratified Charge Compression Ignition in a Gasoline Direct Injection Engine (SCCI 방법을 이용한 직분식 가솔린 엔진내의 압축비 및 흡기 온도 변화에 따른 연소 및 배기 특성에 관한 실험적 연구)

  • Lee Chang-Hee;Lee Ki-Hyung;Lim Kyoung-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.538-545
    • /
    • 2006
  • Stratified charge compression ignition (SCCI) combustion, also known as HCCI(homogeneous charge compression ignition), offers the potential to improve fuel economy and reduce emission. In this study, SCCI combustion was studied in a single cylinder gasoline DI engine, with a direct injection system. We investigated the effects of air-fuel ratio, intake temperature and injection timing such as early injection and late injection on the attainable SCCI combustion region. Injection timing during the intake process was found to be an important parameter that affects the SCCI region width. We also find it. The effects of mixture stratification and fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

Experimental Study on the Heating Performance of a $CO_2$ Heat Pump with Gas Injeciton (가스인젝션을 적용한 이산화탄소 열펌프의 난방성능에 관한 실험적 연구)

  • Baek, Chang-Hyun;Lee, Eung-Chan;Kang, Hoon;Kim, Yong-Chan;Cho, Sung-Wook
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.358-363
    • /
    • 2007
  • In this study, experimental study on the heating performance of a $CO_2$ heat pump with gas injection was performed varying gas injection ratio and outdoor temperature to improve the heating performance of $CO_2$ heat pump. The twin rotary compressor having volume ratio of 0.7 was adopted in the $CO_2$ heat pump. From the test results, the heating capacity and COP were increased and the compressor discharge temperature was decreased with the increase of injection ratio. At the outdoor temperature of $-8^{\circ}C$, the heating capacity and COP with the injection were increased by 45% and 24%, respectively, compared with non-injection condition.

  • PDF

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

Combustion Characteristics of Gasoline Direct Injection Engine with Water Injection into Intake Port under Low Engine-Load Operating Condition (낮은 엔진 부하의 운전조건에서 흡기포트 내 물 분사에 따른 가솔린 직접분사 엔진의 연소 특성)

  • Jeun, Haegwang;Lee, Kyung-Hwan;Choi, Myungsik;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.96-101
    • /
    • 2018
  • The purpose of this study is to investigate the effect of water injection on combustion characteristics of gasoline direct injection (GDI) engine with turbo-charger under low-load operating condition. The test engine used in this study has four-cylinder and 10.2 of compression ratio. In order to study the effect of water injection ratio on combustion characteristics, the water was injected into the intake port from 10% to 50%, based on fuel injection quantity. From the experiment, it revealed that the water injection induced the improvement of fuel economy because of the advance of spark-timing by the reduction of in-cylinder temperature. In addition, the water injection caused the prolong of extension of the ignition delay and slight increase of burn duration.

Optimized mix design of rapid-set lightweight-formed mortar for backfill (굴착복구용 속경성 경량기포 시멘트 모르타르의 최적 배합 도출을 위한 기초 물성 연구)

  • An, Ji-Hwan;Jeon, Sung-il
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • PURPOSES : The objective of this study is to develop an optimized method of mix design for rapid-set lightweight-formed mortar mix. To achieve this objective, the workability, setting time, and compressive strength of mixes under various conditions of mix design were evaluated. METHODS : The water-bonder ratio, fly-ash substitution ratio, and forming agent injection amount were selected as design variables in the study. The fluidity, setting time, density, and strength of the mortar mix were considered as major evaluation criteria of the mixture, and were subsequently utilized to evaluate the characteristics of the mortar mix under various conditions. RESULTS : The observations made from the mix design process are as follows: 1) the air content and fluidity increase as the forming agent ratio and forming agent ratio increase, respectively; 2) the maximum air content is approximately 20%; 3) the accelerating agent decreases the fluidity of the mortar mix by 15% on average; 4) the forming agent injection ratio and fly-ash substitution ratio yield significant effects on the initial and final set times of the mortar mix; 5) as the forming agent injection ratio and fly-ash substitution ratio increase, the compressive strength of the mortar mix decreases; and 6) the 28-day compressive strengths of the forming agent injection ratio and fly-ash substitution ratio yield the most significant effects. CONCLUSIONS : It is concluded that the governing design variables for the rapid-set lightweight-formed mortar mix are the forming agent injection ratio and fly-ash substitution ratio.

Flow Control of a Solenoid Gas Injector and Its Application on a Natural Gas Engine (솔레노이드 가스 인젝터의 유량제어와 천연가스엔진에서의 응용)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.83-89
    • /
    • 2009
  • An air-fuel ratio control is essential in reducing hazardous exhaust emissions from a compressed natural gas(CNG) engine, and can be accomplished by accurate control of gas injection flow. In this study, theoretical research was conducted on injection characteristics of a solenoid gas injector, and injection experiments for calibration and analysis were performed. Various factors for gas injection flow such as injection pressure, gas temperature, and supply voltage are studied. A dynamic flow equation of the natural gas was proposed on the basis of flow dynamics theories and results of the injection experiment. The verification of the dynamic flow equation of the solenoid injector was carried out with a large CNG-engine applied to an urban bus. Air-fuel ratio control experiments were conducted in both steady and transient state. Results of injection experiments for the solenoid injector and the CNG-engine was proved the control method proposed herein to be effective.

  • PDF

The Effect of Mixing Rate and Multi Stage Injection on the Internal Flow Field and Combustion Characteristics of DISI Engine Using Methanol-gasoline Blended Fuel at High Speed / High Load Condition (고속 고부하 상태의 DISI 엔진에서 메탄올-가솔린 혼합연료의 연료 혼합비와 2단 분사가 엔진 내부유동 및 연소특성에 미치는 영향)

  • Bae, Jinwoo;Seo, Juhyeong;Lee, Jae Seong;Kim, Ho Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2013
  • Numerical studies were conducted to investigate the internal flow field and combustion characteristics of DISI engine with methanol blended in gasoline. Dual injection was applied and the characteristics were compared to single injection strategy. The amount of the fuel injection was corresponded to air-fuel ratio of each fuel for complete combustion. The preforming model in this study, software STAR-CD was employed for both modeling and solving. The operating speed condition were at 4000 rpm/WOT (Wide open throttle) where the engine was fully warmed. The results of single injection with M28 showed that the uniformity, equivalence ratio, in-cylinder pressure and temperature increased comparing to gasoline (M0). When dual injection was applied, there was no significant change in uniformity and equivalence ratio but the in-cylinder pressure and temperature increased. When M28 fuel and single injection was applied, the CO (Carbon monoxide) and NO (Nitrogen oxides) emission inside the combustion chamber increased approximately 36%, 9% comparing with benchmarking case in cylinder prior to TWC (Three Way Catalytic converter). When dual stage injection was applied, both CO and NO emission amount increased.