• Title/Summary/Keyword: Injection Molding process

Search Result 903, Processing Time 0.029 seconds

A Comparison of the Effect of Fabrication Methods on Static Strength of Polymer Based Composites under the Low Temperature Range (적층 방법에 따른 고분자 기지 복합재의 저온 영역 하에서 정적 강도 변화의 비교)

  • ;;;Piyush K. Dutta
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.196-201
    • /
    • 2003
  • When the structures are used in cold regions, the mechanical properties and dimension stability of the blade will be changed. The proposal of this study is to test the durability of the structures in cold regions. It is necessary to select the most comfortable materials and fabrication processes for more stable structures in cold regions. To select the most comfortable materials and processes, the static strength has to know through the tensile static tests at the severe condition as cold regions. First, the tensile static specimens made by RIM (Resin injection molding) process & vacuum bagging process with reinforcement materials and resin. Tensile static tests were carried out on three laminate lay-ups (carbon prepreg, carbon fiber dry fabric) at different test temperature($24^{\circ}C$, $-30^{\circ}C$), determining properties such as the mechanical strength, stiffness and strain to failure. At different test temperature, in order to test the tensile strengths of these specimens used the low temperature chamber. Next, the results of this test were compared with each other. Finally, the most comfortable materials and fabrication processes can select based on these results. The results show the changes in the static behavior of three laminate lay-ups at different test temperatures. At low temperatures, the static strengths are higher than the ones at room temperature.

  • PDF

Optimization of Injection Molding Process using the IDESIGN Program (IDESIGN 프로그램을 이용항 사출성형공정의 최적화)

  • 민병현
    • The Korean Journal of Rheology
    • /
    • v.9 no.2
    • /
    • pp.66-72
    • /
    • 1997
  • 사출성형품의 품질특성으로 외관, 치수, 기계적 강도 등이 있으나 조립부품으로써 사 될경우에는 치수가 주요한 품질이 된다. 성형품은 용융수지의 특성상 사출공정 중 수축을 일으키므로 이를 고려해서 금형설계가 이루어지지만 실제 사출과정에서 공정변수를 최적화 하여 관리하지 않으면 허용오차 내의 치수를 얻기가 힘들다. 본 논문에서는 주요조립부의 치수가 허용오차 내에서 얻어지도록 설계시 적용된 수축률과 측정된 수축률의 차이를 목적 함수로 하여 최소화 시키며 반복이차계획 알고리즘을 채택한 IDESIGN 프로그램을 이용해 최적 사출성형조건을 구하였다. 제약조건은 성형품의 부위별 수축률 편차 및 싱크마크 깊이 가 공정변수의 부등호 제약식으로 도출되었고 성형이 이루어지는 공정변수의 상하한 값이 최대 및 최소 경계값으로 적용되었다.

  • PDF

Densification of Metal Injection Molding Parts Made of Ball Milled W-20%Cu Powders (볼밀링한 W-20wt%Cu 분말로 제조된 금속사출성형 부품의 조밀화)

  • 김순욱;류성수;문인형
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.228-236
    • /
    • 2000
  • An investigation was carried out on the possibility whether the ball-milling process of low energy could successfully improve the packing density and flowability for MIM application in W-20wt%Cu system. In this study, W-20wt%Cu powder mixture was prepared by ball-milling. W powder was not fractured by low mechanical impact energy used in the present work during the critical ball-milling time, but the ductile Cu powder was easily deformed to the 3 dimensional equiaxed shape, having the particle size similar to that of W powder. The ball-milled mixture of W-20wt%Cu powder had the more homogeneous distribution of each component and the higher amount of powder loading for molding than the simple mixture of W-Cu powder with an irregular shape and a different size. Accordingly, the MIM W(1.75)-20wt%Cu powder compacts were able to be sintered to the relative density of 99% by sintering at $1400^{\circ}C$ for one hour.

  • PDF

A Study on the Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Membrane (양극산화 알루미늄막을 이용한 나노패턴 성형용 금형제작에 대한 연구)

  • Oh, J.G.;Kim, J.S.;Kang, J.J.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Recently, many researches on the development of super-hydrophobic surface have been concentrated on the fabrication of nano-patterned products. Nano-patterned mold is a key to replicate nano-patterned products by mass production process such as injection molding and UV molding. The present paper proposes the new fabricating method of nano-patterned mold at low cost. The nano-patterned mold was fabricated by electroforming the anodic aluminum oxide membrane filled with UV curable resin in nano-hole by capillary phenomenon. As a result, the final mold with nano-patterns which have the holes with the diameter of 100~200 nm was fabricated. Furthermore, the UV-molded products with clear nano- patterns which have the pillars with the diameter of 100~200nm were achieved.

A study on the plastic parts with nano pattern using Injection molding process (사출성형공정을 이용한 미세패턴을 갖는 플라스틱 부품 제작에 관한 연구)

  • 김동학;김태완
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.356-358
    • /
    • 2003
  • 본 연구에서는 일반사출과 MmSH방식 두 가지의 사출성형공정을 이용하여 나노 패턴 구조물을 제작하였다. 성형품에 나타난 나노패턴의 진사성은 MmSH방식을 이용한 PC 성형품에서 가장 우수했다. 일반사출공정에서 HIPS로 제작된 성형품은 나노패턴의 전사가 잘 형성되었고, PC의 경우 전사가 잘 이루어지지 않았다. 연구 결과 수지의 유동성이 좋고, 금형표면 온도가 높을수록 나노패턴의 전사성은 향상됨을 알 수 있었다.

  • PDF

A Quality Stability Estimation of Shock-absorber Tube for automatic drawer (자동서랍함용 완충기 튜브의 품질 안정성 예측)

  • Son, Jae-Hwan;Kim, Young-Suk;Han, Chang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2919-2924
    • /
    • 2011
  • The automatic drawer is used to absorb the movement shock and adjust its velocity when it opens and closes. The tube in shock-absorber is the cylindrical case which surrounds its parts and is made of acetal. The purpose of this study is to determine the quality stability of the tube in the shock-absorber in injection molding process. The tube which had been manufactured in the process with 4 cavity cooling unit was used. In this study, the analysis and test are carried out to determine its quality stability. Which are the quality analysis with numerical simulation and performance tests of the tube compared with one of foreign make. It is calculated that the injection press is 87.6 MPa and the deflections in X, Y, Z directions are ranged in 0.07~1.00 mm. When the researched tube is compared with the foreign made tube, the maximum bending compressive load is 231 kgf higher, average axial compressive load is 0.05 kgf higher, and the roughness(Ra) on the inner surface is $0.02\;{\mu}m$. lower. In the result, it is known that the quality of researched tube in injection mold process is stable and its performance is superior.

DESIGN OF PARALLEL COOLING CHANNELS IN A PLASTIC INJECTION MOLD (사출 금형의 병렬 냉각 채널 설계 방법)

  • Kim, H.S.;Jung, H.K.;Han, B.Y.;Kim, Y.M.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.93-98
    • /
    • 2012
  • The injection molding process is suitable for manufacturing complicated plastic products. As the customer request higher quality products increase, realization of the precise dimensional and shape controls is getting more important. For this purpose it is important to obtain uniform cooling procedure over the whole surface of the high temperature molded plastic. Failure to this may lead to different shrinkage speed, internal stresses and unwanted shape deformations. It is necessary to distribute coolant flow rates to the main channel and to the sub-channels properly to insure uniform cooling process when there are parallel cooling channels. In this study, three-dimensional turbulent flow simulations for representative parallel cooling channels were performed. To insure the intended flow rate to each sub-channels, various shape designs for the channel system were investigated. The results show that as the Reynolds number increases the effect of shape design is more profound. Through the proper flow distribution, uniform cooling effects would be expected.