• 제목/요약/키워드: Injection Molding Process

검색결과 903건 처리시간 0.024초

사출압축성형시 PMMA 재료의 성형수축거동 (The Behavior of Shrinkage on PMMA in Injection Molding Compression Molding)

  • 최윤식;한성렬;정영득
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.83-89
    • /
    • 2005
  • Molding shrinkage is one of the problems to be solved in conventional injection molding. Despite many trying-out has been to solve it, intrinsic cause of shrinkage such as orientation and thermal exchange between melt and mold has not been solved yet. For reducing shrinkage and residual stress on molding, injection compression molding process was invented. In this study, experiments about effects of injection compression molding's parameters on shrinkage of PMMA molding were conducted and compared with conventional injection molding's shrinkage. Before the injection compression molding experiment, molding shrinkage rate was predicted by analyzing pvT diagram and was compared with the results of experiment. The shrinkage rate of injection compression molding was lower than convention injection molding's one which was different from the predicted shrinkage. The reason was observed that the experimental mold was not a proper type for injection compression, flowing backward of melt into nozzle and unreasonable mechanism of injection molding machine.

  • PDF

코어백 방식을 이용한 동시사출 성형 공정 최적화 연구 (Optimization of Multi-component Injection Molding Process Based on Core-back System)

  • 최동조;박홍석
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.67-74
    • /
    • 2009
  • Injection molding have been used for manufacturing various fields of automotive interior trims for years. The demands on the injection molding technique are grown with the further development of the automobile technique and the design presentations for cost reduction and environment-friendly. This paper shows that multi-component injection conditions are different from general injection, also shows how to optimize part design and mold design and how to manufacturing through the efficient use of multi-component injection in development process using core back system. To fulfill this purpose, all influential process parameters related to the quality of automobile parts were analyzed in terms of the correlation between them. Base on that, a innovative process will be developed by injection engineers to implement it in practice.

사출 금형의 능동형 온도제어에 따른 사출특성에 관한 연구 (A Study on Injection Characteristic using Active Temperature Control of Injection mold)

  • 조창연;신홍규;홍남표;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.302-305
    • /
    • 2007
  • In recent years, many researches on new storage media with high capacity and information are developing. For manufacture of optical storage with high capacity, the injection molding process is generally used. In order to increase the filling ratio of the injection molding structure, the injection molding process required for high injection pressure, packing pressure and temperature control of the mold. However, conventional injection molding process is difficult to increase the filling ratio using injection master with the range of several nanometers and high aspect ratio. In order to improve and increase filling ratio of nano-structure with high aspect ratio, the active temperature control of injection mold was used. Experimental conditions were used injection pressure, time and temperature. Consequently, by using the peltier device into injection mold, we carried out the efficient and active temperature control of mold at low cost.

  • PDF

급속 금형가열에 의한 박육 사출성형의 유동특성 개선에 관한 연구 (A Study on Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Mold Heating)

  • 박근;김병훈
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.15-20
    • /
    • 2006
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filling difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation for both the conventional molding and the RTR molding processes.

Moldflow를 이용한 인라인스케이트 프레임의 사출성형공정에 관한 연구 (A Study on the Injection Molding Process of Inline Skate Frame Using Moldflow)

  • 이형우;박철우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.289-295
    • /
    • 2010
  • 플락스틱 재료를 사용한 가공법 중에서 가장 보편적인 가공법이 사출성형이다. 플라스틱 재료의 활용도는 지속적으로 증가하고 있으며, 신소재 등의 개발로 그 적용범위 또한 확대되고 있다. 사출성형에서 수축현상은 수지의 종류, 즉 결정성 수지인지 비결정성 수지인지에 따라 크게 다르게 나타나며 사출성형시의 운전조건에 따라서도 다르다. 본 연구에서는 Al합금으로 제작되고 있는 인라인 스케이트의 프레임을 플라스틱 재료로 대체하기 위한 최적화 공정에 관한 것이다. 금형설계 전 해석을 통하여 성형공정이 최소화되는 런너와 게이트의 치수와 형상을 결정하겠다. 런너와 게이트의 치수 변화에 따른 제품의 사출성형성을 알아보겠다. 본 연구의 시뮬레이션에서는 사출성형해석용 소프트웨어인 Moldflow를 이용해서 해석을 수행하였다.

초미세 발포 사출 성형 공정에서 성형된 플라스틱의 수축률 측정에 관한 연구 (A Study on Measurement of Shrinkage of Molded Plastics in a Microcellular Foaming Injection Molding Process)

  • 황윤동;차성운;이정현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.621-626
    • /
    • 2001
  • Microcellular foaming process was developed at MIT in 1980's to save a quantity of raw materials and improve mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. Of all process variables, part dimension control and shrinkage are the most influential on the post molded dimension. The post molding dimensional change of thermoplastic resins is important to tool designers for predicting the specific difference of molded part vs. actual mold cavity. Generally, articles injection molded are smaller in size than the cavity; hence, the term shrinkage factor is used to define the allowance a designer specifies. It is important to consider the factors that influence molded part dimension. According to ASTM Designation: D 955, shrinkage from mold dimensions of molded plastics was measured. In injection molding, the difference between the dimensions of the mold and of the molded article produced therein from a given material may vary according to the design and operation of the mold. In this paper, shrinkage data of molded plastic parts was obtained. It can be an important information for designing optimum mold system in a microcellular foaming injection molding process.

  • PDF

캐비티 온도센서를 이용한 최적 사출공정 제어 (Optimal Control of Injection Molding Process by Using temperature Sensor)

  • 박천수;강철민
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.30-33
    • /
    • 2008
  • Injection Molding is the most effective process for mass production of plastic parts. The injection molding process is composed with several steps such as Filling, Packing, Holding, Cooling, Ejecting. Among them, filling and packing process should be considered carefully to improve accuracy of dimension, surface quality of plastic parts. Usually the quality above-mentioned is managed with weight of part after molding on the field. In this paper, a series of experiment for molding automotive front bumper was conducted with cavitity temperature sensor to optimize switch-over time(V-P switching), hot runner vale gate sequence time during filling and packing step for the purpose of uniform quality, weight at every molding. As a result, it was found that it is effective method to use temperature sensor in injection molding for quality control of plastic molding.

  • PDF

가스사출성형인자가 가스사출성형품의 중공부 형성에 미치는 영향 (Effects of Processing Variables on the Gas Penetrated Part of Gas-Assisted Injection Molding)

  • 한성렬;박태원;정영득
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.144-150
    • /
    • 2005
  • Gas-assisted injection molding (GAIM) process is reducing the injection pressure during mold filling required as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process introduces new parameters and makes the application more difficult because the process interacts between gas and melt during injection molding process. Important GAIM factors that involved in this process include gas penetration design, locations of gas injection points, shot size, gas injection delay time as well as common injection molding parameters, gas pressure and gas injection time. In this study, the experiments were conducted to investigate effects of GAIM process variables on the gas penetration for PP and ABS moldings by changing gas injection point. Taguchi method was used fer the design of experiment. When the gas was injected at cavity's center, the most effective factor was shot size. When the gas was injected at cavity's end, the most effective factor was melt temperature. Injection speed was also an effective factor in GAIM process.

컴퓨터 시뮬레이션과 다구치 방법을 이용한 냉각 필터 사출성형 공정의 최적화 (Optimizing the Injection Molding Process for Cooling Filter Using Computer Simulation and Taguchi Methods)

  • 이승훈;민병현;김병곤
    • 산업공학
    • /
    • 제15권3호
    • /
    • pp.263-269
    • /
    • 2002
  • The injection molding process is a one of the most efficient techniques for manufacturing plastic parts of complex shape at low cost. In injection molding, molten plastic material is injected into the mold and cooled. Selection of molding conditions greatly affects the quality of molded parts. In this case study, we attempted to optimize the injection molding condition for a cooling filter using Taguchi experimental design methodology. The injection molding experiments were carried out using the Moldflow simulation software.

가스사출성형을 이용한 휴대용 화장품 보관함의 일체화 성형 연구 (A Study on the Unified Molding of a Portable Cosmetic Chest Using Gas-Assisted Injection Molding)

  • 이호상;류연선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.772-777
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF