• 제목/요약/키워드: Injection Molding Machine

검색결과 192건 처리시간 0.022초

사출 성형기 Barrel 온도에 관한 퍼지알고리즘 기반의 고장 검출 및 진단 (Fault Detection and Diagnosis based on Fuzzy Algorithm in the Injection Molding Machine Barrel Temperature)

  • 김훈모
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.958-962
    • /
    • 2003
  • We acquired data of injection molding machine in operation and stored the data in database. We acquired the data of injection molding machine for fault detection and diagnosis (FDD) continuously and estimated the fault results with a fuzzy algorithm. Many of FDD are applied to a huge system, nuclear power plant and a computer numerical control(CNC) machine for processing machinery. But, the research of FDD is rare in injection molding machine compare with computer numerical control machine. We appraise the accuracy of the FDD and the limit of the application to the injection molding machine. We construct the fault detection and diagnosis system based on fuzzy algorithm in the injection molding machine. Data of operating injection molding machine are acquired in order to improve the reliability of detection and diagnosis.

서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구 (A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor)

  • 윤홍식;김성동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권3호
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.

마이크로 금형 가공 및 사출성형에 관한 연구 (Micro Parts Machining and Injection Molding Technology)

  • 최두선;제태진;이응숙;신보성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.452-457
    • /
    • 2003
  • As a fundamental study on developing elements with micro shape, micro mold parts machining and experiment of injection molding using it were performed. The ultra precision micro machining system with high functionality was fabricated, and utilized in the machining of micro parts. By using this machining system and micro end-mill tool, a micro circle column structure of high aspect ratio, diameter 60 $\mu\textrm{m}$, height 500 $\mu\textrm{m}$, was fabricated. And a micro lens molds were fabricated by using ball end-mill tool of 300 $\mu\textrm{m}$ diameter and diamond fly-cut tool of 150 $\mu\textrm{m}$ radius. A micro injection molding machine, which is clamping force 1.75 ton, injection capacity 2.8cc, was fabricated for injection molding experiment using micro molds. The injection molding experiment was performed by using the injection molding machine, micro cylinder structures and lens molds. This paper introduces these micro machining system and injection molding machine and demonstrates examples of injection molding using fabricated molds.

  • PDF

PC 기반 PLC를 이용한 사출성형기 배럴의 퍼지 온도 제어에 관한 연구 (A Study on Fuzzy Temperature Control for the Barrels of Injection Molding Machine using PC based PLC)

  • 김훈모
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.768-773
    • /
    • 2003
  • Injection molding has been widely used for the mass production of a plastic product. With the development of the relative technique, various injection molding techniques have been developed and we could get more precise plastic product. The temperature of a melting resin is an important factor in the injection molding and this temperature has direct influence on the quality of a plastic product. In the present injection molding machine, the deriation of a temperature controlled by PID control method is within 2$^{\circ}C$ in the injection molding machine but PID control method takes too much time to stabilize after preheating and its overshoot is so big. We applied fuzzy control to alleriate the problem. In this research, we experimented the fuzzy temperature control with the usage of PC based PLC.

고효율 사출성형기의 에너지 절감 및 성형 재현성 연구 (The Energy Saving and the Reproducibility of Highly-Efficient Injection Molding Machine)

  • 황철진;김종선;정철;안희정;허영무;김종덕;윤경환
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.662-667
    • /
    • 2008
  • Because of steep rise of international energy cost in recent years, high efficiency has been emphasized in energy policy. As far as injection molding machine is concerned, hybrid method using hydraulic and electric systems became the key to this energy saving. The energy saving and molding reproducibility of hybrid injection molding process were shown experimentally. The power consumption of hybrid injection molding machine is reduced to 38% as compared with that of hydraulic machine. Furthermore, the molding reproducibility was shown for both methods.

미소부품용 미세사출성형기 시작품 개발 (Development of Micro Injection Molding Machine for Micro Parts)

  • 제태진;신보성;최두선;이응숙;김영민;강신일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.337-341
    • /
    • 2002
  • In these day, micro systems have gained attention with development of advance technologies. Researches about the fabrication of micro parts are actively made in the whole world. Among the researches, technology for micro injection molding machine is one of the key issues for fabrication of micro parts. In this study, we developed a micro injection molding machine for micro parts. To achieve this, injection unit was constructed using a screw with diameter of 12 mm. Clamping unit with clamping force of 1.75 kgf/$\textrm{cm}^2$ was constructed. Also verification test fur fabrication of micro parts was performed. It was performed that the micro injection molding machine can fabricate micro parts based on the result.

  • PDF

Machine Learning Model for Reduction Deformation of Plastic Motor Housing for Automobiles

  • Seong-Yeol Han
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.64-73
    • /
    • 2024
  • The purpose of this paper is to introduce a fusion method that combines the design of experiments (DOE) and machine learning to optimize the bias of plastic products. The study focuses on the plastic motor housing used in automobiles, which is manufactured through plastic injection molding. Achieving optimal molding for the motor housing involves the optimization of various molding conditions, including injection pressure, injection time, holding pressure, mold temperature, and cooling time. Failure to optimize these conditions can lead to increased product deformation. To minimize the deformation of the motor housing, the widely used Taguchi method, which is one of the design of experiment techniques, was employed to identify the injection molding conditions that affect deformation. Machine learning was then applied to various models based on the identified molding conditions. Among the models, the Random Forest model emerged as the most effective in predicting deformation amounts. The validity of the Random Forest model was also confirmed through verification. The verification results demonstrated the excellent prediction accuracy of the trained Random Forest model. By utilizing the validated model, molding conditions that minimize deformation were determined. Implementation of these optimal molding conditions led to a reduction of approximately 5.3% in deformation compared to the conditions before optimization. It is noteworthy that all injection molding outcomes presented in this paper were obtained through robust injection molding simulations, ensuring both research objectivity and speed.

사출성형기용 실린더의 응력안전성에 관한 수치적 연구 (Numerical Study on the Stress Safety of a Cylinder for an Injection Molding Machine)

  • 김청균;김경섭
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.401-406
    • /
    • 2011
  • This study presents the stress safety analysis of a cylinder, which is manufactured by a tempered ASTM D2, tempered SM45C and normalized SM45C materials, respectively. The inner diameter of three cylinder models are 85mm, 95mm, and 11 Omm and the total length of a cylinder is 2,365mm for a high pressure injection molding machine. The FEM computed results show that the inner diameter of 85mm with a thick thickness of 62.5mm may produce the injection pressure of 325MPa and the inner diameter of 110mm with 50mm thickness reduces up to the injection pressure of 220MPa because of a reduced thickness of a cylinder. These injection pressures are enough for a high pressure injection molding machine assembled by ASTM D2 cylinder. And also, an injection cylinder manufactured by a tempered SM45C material in which is low priee may produce 225MPa injection molding pressure and this may sufficiently endure stress safety compared to that of ASTM D2 cylinder material. Thus, this study recommends that tempered SM45C cylinder is appropriated for a mild injection molding machine as an alternative cylinder material when the safety strength and low prices are considered. But the normalized SM45C cylinder material does not meet a stress safety of yield strength in general.

사출성형기 유압시스템의 특성 검토를 위한 해석 모델 개발 (Development of Analysis Model for Characteristics Study of Fluid Power Systems in Injection Molding Machine)

  • 장주섭
    • 유공압시스템학회논문집
    • /
    • 제8권4호
    • /
    • pp.1-8
    • /
    • 2011
  • Injection molding machine is the assembly of many kinds of mechanical and fluid power part and electro-electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of injection molding machine are modelled and analyzed using a commercial program AMESim. The analysis model which is detailed about the parts applied a publishing catalog data. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like displacement, pressure, flow rates at each node and so on. Total fluid power circuit model is also made and analyzed. The results made by analysis will be used design of fluid power circuit of injection molding machine.

이색 사출성형기 개발을 위한 유압시스템의 특성 검토 (Characteristics Analysis of the Fluid Power System for a Double-color Injection Molding Machine Development)

  • 장주섭
    • 유공압시스템학회논문집
    • /
    • 제8권4호
    • /
    • pp.24-31
    • /
    • 2011
  • Double-color Injection molding machine is the assembly of many kinds of mechanical, fluid power part and electric electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of double-color injection molding machine are modelled and analyzed using a commercial program AMESim. Partial system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like pressure, flow rates, displacement at each node and so on. Analysis modeling and compared the data which gets from experiment and the analysis result which has a reliability got data. The results made by analysis will be used design of fluid power circuit for developing a double-color injection molding machine.