• Title/Summary/Keyword: Injection Molded Parts

Search Result 209, Processing Time 0.021 seconds

The Effect on Recycled resin Ratio of High Density Polyethylene on the Molded Parts (高密度 폴리에틸렌 材料의 再活用 混合比가 成形品에 미치는 影響)

  • Kang, Tae-Ho;Kim, In-Kwan;Kim, Young-Soo
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.23-27
    • /
    • 2004
  • In this study, experimental work was performed to mold tensile specimens by using the injection molding machine. Melt temperature, mold temperature and the mixed ratio of recycled resin were selected as processing parameters for studying the effect of those conditions on the shrinkage, weight, absorption, and tensile strength of molded parts. As a result, the shrinkage was increased according to the higher mold and melt temperature and it was more sensitive to the change of mold temperature. On the other hand, the weight of molded parts was decreased due to the increment of mold and melt temperature. Tensile strength was increased with mold and melt temperature, and it was also easy to change by mold temperature.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

A Model for the Relation between Strength and Porosity in Sintered Parts Produced by Powder Injection Molding Process (분말사출성형을 통해 제조된 소결체의 기공율에 따른 강도예측모델)

  • 성환진;하태권;안상호;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.375-378
    • /
    • 2003
  • In the present study, a new approach to predict the strength of sintered materials has been carried out and a new framework combining neck growth model and ideal pore model has been established based on the results of tensile tests on powder injection molded specimens with the various porosity. Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. PIM delivers structural materials in a shaping technology previously restricted to polymers. 17-4 PH stainless steel powders with average diameters of 10 $\mu\textrm{m}$ were injection-molded into flat tensile specimens sintered at the various temperatures ranging from 900 to 1350$^{\circ}C$ for 1h. The relationships between strength and porosity were applied to the experimental results and verified.

  • PDF

A Knowledge-Based CAD System for Delivery Design in Injection Molding (사출성형에 있어서 유동주입기구 설계를 위한 지식형 CAD 시스템)

  • 이찬우;허용정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.723-726
    • /
    • 2001
  • The design of delivery system is one of the most important subject in injection molding. Delivery system is a channel to flow the polymer melt from the injection molding machine to the mold cavities and affect quality and productivity of the part. The synthesis of delivery system of injection molding has been done empirically, since it requires profound knowledge about the moldability and causal effects on the properties of the part, which are not available to designers through the current CAD systems. A knowledge-based CAD system is constructed by adding the knowledge module to an existing geometric modeler and contains knowledge to permit non-experts ad well as mold design experts to generate the acceptable geometries of gate and runner for injection molded parts.

  • PDF

A Study on the Warpage in Injection Molded Part for Various Rib Design and Reinforced Resins (보강 수지의 종류와 사출성형품의 리브 설계에 따른 휨의 연구)

  • Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • Most of the plastics products have been manufactured by injection molding. Molding trouble in injection-molded parts is caused by changing a molding product and molding process condition, etc. In this study, warpage in the injection molded part have been studied. Specimens are rectangular flat shape with and without ribs. Non-crystalline resins (ABS+GF30%, PC+GF30%) and crystalline resins (PP+GF30%, PA66+GF30%) were used for material. Flat shape ribs showed higher warpage than flat shape without rib by 10 to 41%. the specimens with ribs that are located parallel to flow direction has higher warpage than the specimens with rib that are located perpendicular to flow direction by 11 to 50%. crystalline resins have higher warpage than non-crystalline resins by 22 to 78%. Warpage decreases as packing time increases as injection temperature increases.

  • PDF

Effects of the mold surface heating methods for the DVD stamper with nano pattern on the transcription of the injection molded parts using COC and PMMA plastics (나노패턴을 갖는 DVD용 스템퍼의 표면가열방식이 COC, PMMA 수지를 이용한 사출성형품의 전사성에 미치는 영향)

  • 김동학;유홍진;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.218-222
    • /
    • 2004
  • We developed the stamper structured mold with moving core type with nano pattern. Among the factors affecting the quality of injection molding plastic parts, We studied the effects of moving core surface heating method on the transcription of injection molding plastic parts with nano structures. Moving core surface heating has been tested by three different methods. The first was conventional injection molding process without heating moving core surface, the second was halogen lamp radiation heating process and the last was MmSH process using gas flame. As a result of making injection molded parts by using thermoplastic amorphous resins such as COC, PMMA, MmSH method which is the most high temperature of moving core surface showed the best nano pattern transcription of the three methods, but the outcome of conventional injection molding process was not better than others.

  • PDF

A Study on Sink Marks in Injection Molding of Boss Parts (보스부분 사출성형의 싱크마크 발생에 관한 연구)

  • Kim, Hyun-Pil;Kim, Yong-Jo
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • Supplementary features in injection molded products, which are boss, rib and snap fit, are mainly located in the products. These features might make molding flow improper in injection processing and consequently give rise to some of molding troubles such as short shot and hesitation. The sink mark on boss parts is generated by the volumetric shrinkage that is caused by both the molding thickness and the closed boss height. The volumetric shrinkage is affected by packing pressure and its amount tends to decrease by increasing the packing pressure. The packing pressure can therefore increase flow rate to a boss part and causes the sink mark depth to increase. As the molding thickness and the closed boss height in the boss part can increase the part volume, these may yield bad solidifying and also extend the molding cycle. In this paper, both the injection molding test and the flow analysis were carried out to investigate the effect of sink marks generated in the boss part of injection molded products.

  • PDF

A Study on the Surface Characteristics of Injection Mold and Injection Molded Part depending on LGP-Mold Fabrication Methods (도광판 금형의 제작 방법에 따른 사출금형 및 성형품의 표면특성에 관한 연구)

  • Do, Y.S.;Kim, J.S.;Ko, Y.B.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.596-602
    • /
    • 2007
  • LGP (Light Guiding Plate) of LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of the major components that affect the product quality of LCD. The optical patterns of LGP(2.2") molds are fabricated by three different methods, namely, (1) laser ablation, (2) chemical etching and (3) LiGA-reflow, respectively. The characteristics of surface patterns and roughnesses of molds and injection molded parts were compared to evaluate the optical characteristics. The optical patterns of injection molded LGP with mold fabricated by LiGA - reflow method showed the best geometric structure. The surface roughness (Ra) of LGP#s with molds fabricated by (1) laser ablation: $Ra={\sim}31nm$, (2) chemical etching: $Ra={\sim}22nm$, and (3) LiGA-reflow: $Ra={\sim}4nm$.

A Study on the Characteristics of Plastic Injection Molding Using Core in Core Cooling Technology (Core in Core 냉각기술을 적용한 플라스틱 사출성형 특성에 관한 연구)

  • Choi, Yun-Seo;Park, In-Seung;Yang, Dong-Ho;Ha, Byeong-Cheol;Heo, Man-Woo;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.82-87
    • /
    • 2019
  • Recently, plastic materials have become more diversified, and the development of materials with excellent mechanical properties and plasticity has enabled wider application, miniaturization, and refinement of injection molded products. As a result, the utilization of these products in household goods, electronics, automotive parts, and aircraft parts is increasing in almost all industries. Injection molded parts are often used externally on finished commercial products. This means that the injection mold industry is very important to the value of these products. For this reason, the industry is performing research on the precision and efficiency of the injection molding process. In this study, we investigated the applicability of the core in core cooling method to the problem of product deformation due to temperature variation in existing injection mold designs. We also characterized the cooling performance of an injection mold when using this cooling method.