• 제목/요약/키워드: Injection Molded Parts

검색결과 209건 처리시간 0.027초

A Study on the Unified Molding of a Portable Cosmetic Chest Using Gas-Assisted Injection Molding (가스사출성형을 이용한 휴대용 화장품 보관함의 일체화 성형 연구)

  • Lee, Ho-Sang;Ryu, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.772-777
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

Shoemoulds Runner Shape Optimization using MoldFlow (MoldFlow를 이용한 신발 사출금형 러너부 형상 최적화)

  • 류미라;서영백;문병주;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1483-1486
    • /
    • 2003
  • Injection mold is a manufacturing process used to produce the various parts of complicated shape at a low cost. Many factors such as, section shape, resin and mold temperature, filling time, etc, affect on the quality of injection part during injection molding process. The precent study, was carried out the shrinkage analysis of shoes injection mold to optimize runner shape based on filling and packing pressure with MoldFlow. Taguchi design and analysis of variance are used to optimize injection mold design.

  • PDF

A Study on the Unified Molding for a Box Shaped Thick Part Using Gas-Assisted Injection Molding (가스사출성형을 이용한 두꺼운 박스형 제품의 일체화 성형 연구)

  • 이호상
    • Transactions of Materials Processing
    • /
    • 제10권5호
    • /
    • pp.402-410
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

A Study on the Variable Condition Debinding Process in Supercritical CO2 for Removing Binder from Thick Ceramic Injection Molded Parts (두꺼운 세라믹 사출성형체로부터 효율적인 결합제 제거를 위한 초임계 CO2 가변조건 탈지공정 연구)

  • Kim, Hyung-Kun;Yim, Joon-Hyuk;Kim, Hyung-Soo;Lim, Jong-Sung
    • Clean Technology
    • /
    • 제18권2호
    • /
    • pp.155-161
    • /
    • 2012
  • The purpose of this study is to remove paraffin wax binder effectively from powder injection molded part using supercritical fluids in powder injection molding process. For a thin powder injection molded part about 1-2 mm thickness, paraffin wax binder can be removed rapidly without any defect by traditional supercritical extraction process which has fixed high temperature and pressure condition. But, for a thick powder injection molded part, there are limitations in removing paraffin wax binder by the fixed high process condition because crack occurs at the beginning step. Therefore, here we studied variable condition debinding process that starts with mild process condition at the beginning step and then increase the process conditions simultaneously at each step. To find out the initial process condition that has the highest extraction yield without any defect for each sample thickness, we investigated various supercritical debinding conditions using 1-4 mm thickness ceramic injection molded sample. By using the variable condition debinding process that starts with the initial process condition at the first step and then increasing process conditions simultaneously at each step (temperature from 333.15 to 343.15 K, pressure from 12 to 27 MPa, and $CO_2$ flow rate from 1.5 to 10 L/min), over 95% of paraffin wax binder was removed from the 4 mm thick (10 mm diameter) ceramic injection molded disk samples within 5 hours.

An Inspection Method for Injection Molded Automotive Parts using Line-Scan (라인스캔을 이용한 자동차 사출성형 부품의 검사 기술)

  • Yun, Jae-Sik;Kim, Jin-Wook;Huh, Man-Tak;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.805-807
    • /
    • 2011
  • In this paper, we propose a method to inspect defects of injection molded automotive parts. In order to inspect them, we developed and used a line detection algorithm and a defect analysis algorithm. The line detection algorithm defines center point of a laser line and the inspection algorithm determines the defects of automotive parts using pattern data of inspected objects and the data results from the line detection algorithm. We evaluated the accuracy and the processing time of inspection and they showed good performance.

  • PDF

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • 제19권4호
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

A Study on the Bend Deformation Cause Analysis of CAE Applied Wire to Board Connectors (압접 커넥터 CAE 적용 휨 변형 원인 분석에 관한 연구)

  • Jeon, Yong-Jun;Shin, Kwang-Ho;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.19-25
    • /
    • 2016
  • Connectors are very important components that transmit electric signals to different parts. It must maintain intensity of the connector to prevent defects from impact and maintain contact to transmit electric signals. Most of the external parts of the connector, which act as the main framework, are formed by injection molding. However, bend deformation occurs for injection molded products due to the residual stress left inside the product after product molding. When the bend deformation is large, it does not come into complete contact when being assembled with other parts, which leads to connector contact intensity not being properly maintained. In result, the main role of the connector, which is to transmit electric signals, cannot be performed. In order to address this problem, this study conducted bend deformation cause analysis through bend deformation analysis to predict and prevent bend deformation of housings and wafers, which are injection molded products of pressure welded connectors that are normally applied in compact mobile and display products. Bend deformation analysis was carried out by checking the charging time, pressure distribution and temperature distribution through wire to board connector wafer and housing injection molding analysis. Based on the results of the bend deformation analysis results, the cause of the bend deformation was analyzed through deformation resulting from disproportional cooling, deformation resulting from disproportional contraction, and deformation resulting from ingredient orientation. In result, it was judged that the effects for bend deformation were biggest due to disproportional contraction for both the pressure welded connector wafer and housing.

Fiber Orientation Distribution of Injection Molded Product on the Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료 사출성형품의 섬유배향상태)

  • Lee Dong-Gi;Sim Jea-Ki;Kim Jin-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제14권1호
    • /
    • pp.73-80
    • /
    • 2005
  • Injection molding is the most widely used process for the industrial forming of plastic articles. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of welding parts in injection-molded products is assessed. And the effects of fiber content and injection mold shapes on the fiber orientation in case of fiber reinforced polymeric composites are studied experimentally.

Development of Cermet Cutting Tool by Powder Injection Molding

  • Chung, Seong-Taek;Kwon, Young-Sam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.493-494
    • /
    • 2006
  • Chip breaker of cutting tool is an important feature to enhance cutting performance. Powder injection molding process was used to produce a triangular-shape cermet grooving insert which has three chip breakers. Attrition milled cermet powders were mixed with wax-based binder system in continuous twin screw extruder. Three-plate injection mold with slide cores was used to produce injection-molded parts. After molding, solvent and thermal debinding was carried out. Sintering was conducted in a batch furnace with a graphite heater. The sintered parts satisfy the requirements of dimensional tolerances and material properties.

  • PDF

Research of Shrinkage Phenomenon on Metal Insert Injection Molded Parts (금속인서트 사출성형품의 수축현상에 관한 연구)

  • Jeong, Y.D.;Kim, Y.S.;Kim, I.K.;Jung, H.C.
    • Journal of Power System Engineering
    • /
    • 제2권1호
    • /
    • pp.80-85
    • /
    • 1998
  • Engineering plastics have been magnified its usability due to its outstanding mechanic al, electrical and chemical properties, for example, in the area of computer, electricity, electronics, automobile, camera industry. In recent, automobile speedometer system is changing from manual operation to motor operation. All plastic gears inserted by metal shaft are used In motor operated speedometer system. Therefore, in this research, experimental investigation of the shrinkage phenomenon was executed according to various inserted depth and injection conditions. In experiments, the inserted depth was controlled as 30% and 90% of the total thickness of the plastic gear. The main parameters of injection process were selected as injection pressure, holding pressure, melt temperature, injection rate. As main results, free shrinkage rate of the test part is increased about 4 times to restricted shrinkage rate and shrinkage phenomenon against all injection conditions have a trivial effect on the test parts as conventional parts.

  • PDF