• Title/Summary/Keyword: Initiation crack

Search Result 822, Processing Time 0.025 seconds

A Study of Small Fatigue Crack Measurement and Crack Growth Characteristics (미소균열측정과 성장특성에 관한 연구)

  • Lee, Jong-Hyung;So, Yoon-Sub;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Sang-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adapted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack when maximum crack depth is larger than the notch curvature radius.

  • PDF

A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen (열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구)

  • Lee, Gyu-Beom;Choi, Joo-Ho;An, Dae-Hwan;Lee, Bo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • In the nuclear power plant, early detection of fatigue crack by non-destructive test (NDT) equipment due to the thermal cyclic load is very important in terms of strict safety regulation. To this end, many efforts are exerted to the fabrication of artificial cracked specimen for practicing engineers in the NDT company. The crack of this kind, however, cannot be made by conventional machining, but should be made under thermal cyclic load that is close to the in-situ condition, which takes tremendous time due to the repetition. In this study, thermal loading condition is investigated to minimize the time for fabricating the cracked specimen using simulation technique which predicts the crack initiation and propagation behavior. Simulation and experiment are conducted under an initial assumed condition for validation purpose. A number of simulations are conducted next under a variety of heating and cooling conditions, from which the best solution to achieve minimum time for crack with wanted size is found. In the simulation, general purpose software ANSYS is used for the stress analysis, MATLAB is used to compute crack initiation life, and ZENCRACK, which is special purpose software for crack growth prediction, is used to compute crack propagation life. As a result of the study, the time for the crack to reach the size of 1mm is predicted from the 418 hours at the initial condition to the 319 hours at the optimum condition, which is about 24% reduction.

The Research of Fatigue-Crack Initiation and Propagation for S35C Steel (S35C강의 피로균열 발생 및 진전에 관한 연구)

  • 진영준
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • Surface crack growth characteristics and influence of the stress amplitude in rotary bending fatigue test were evaluated for annealed S35C steel, and than fractal dimensions of fatigue crack paths estimated using the box counting method. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Crack growth rate ds/dN and db/dN (s : half crack length at the surface crack, b : crack depth) depended on stress amplitude (${\Delta}{\sigma}/2$), stress intensity factor range (${\Delta}K_A, {\Delta}K_C$) and crack length. (2) At the effect area of 0.3 mm hole notch (s<0.5 mm) crack growth rate did not depend on these factors. (3) The fractal dimensions (D) increased with stress amplitude (${\Delta}{\sigma}/2$) but decreased with cyclic number.

  • PDF

A Study on Corrosion Fatigue Crack Growth Behavior in Al-Alloy 7075-T651 (I) (Al-Alloy 7075-T651의 부식피로균열 성장거동에 관한 연구(I))

  • 김봉철;한지원;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 1998
  • Fatigue crack growth rates(i.e. crack initiation and crack growth of short and long crack) are investigated using commercial plates of high strength Al alloy 7075-T651 for the transverse-longitudinal(T-L) direction in air, water and sea water. Also, the evaluation direct current potential drop(D.C.P.D) method and the fractographical analysis by SEM are carried out. Near threshold region, short crack growth rates were much faster than those of comparable long cracks, and these short crack growth rates actually decrease with increasing crack growth and eventually merge with long crack data. Fatigue crack propagation rates in aggressive media(i.e. sea water) increase noticeably over three times those in air. One of the most significant characters in this phenomenon as a corrosion-fatigue causes an acceleration in crack growth rates. Sea water environment, particularly Cl$^{[-10]}$ solution brings the most detrimental effects to aluminum alloy. The result of fractographical morphology in air, water and sea water by SEM shows obvious dimpled rupture and typical striation in air, but transgranular fracture surface in water and sea water.

  • PDF

The Influence of the Small Circular Hole Defect on the Fatigue Crack Propagation Behavior in Aluminum Alloys (알루미늄 합금재의 피로크랙 전파거동에 미치는 미소원공결함)

  • Kim, G.H.;Lee, H.Y.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.834-840
    • /
    • 2008
  • We carried out fatigue testing with materials of aluminum alloyC7075-T6, 2024-T4) by rotary bending fatigue tester. We investigated fatigue limit, fatigue crack initiation, fatigue crack propagation behavior and possibility of fatigue life prediction to the different small circular hole defect. The summarized result are as follows; Fatigue limit of the smooth specimens were related tensile strength and yield strength. In case of more large applied stress and small circular hole crack defect, the fatigue crack was grown rapidly. The fatigue crack propagation behavior proceed at according to inclusion. Fatigue crack propagation ratio appeared instability and retardation phenomenon in the first half of fatigue life but appeared stability and replied in the latter half. On other hand, this experimental data of the materials are appeared fatigue life predictability.

Suppression of interfacial crack for foam core sandwich panel with crack arrester

  • Hirose, Y.;Hojo, M.;Fujiyoshi, A.;Matsubara, G.
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.11-30
    • /
    • 2007
  • Since delamination often propagates at the interfacial layer between a surface skin and a foam core, a crack arrester is proposed for the suppression of the delamination. The arrester has a semi-cylindrical shape and is arranged in the foam core and is attached to the surface skin. Here, energy release rates and complex stress intensity factors are calculated using finite element analysis. Effects of the arrester size and its elastic moduli on the crack suppressing capability are investigated. Considerable reductions of the energy release rates at the crack tip are achieved as the crack tip approached the leading edge of the crack arrester. Thus, this new concept of a crack arrester may become a promising device to suppress crack initiation and propagation of the foam core sandwich panels.

A Prediction of Crack Growth Path by Boundary Element Method (경계요소법(境界要素法)에 의한 균열 진전경로(進展經路)의 예측)

  • S.C.,Kim;W.K.,Lim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.39-46
    • /
    • 1988
  • The purpose of this paper is to apply the boundary element method to predict the crack growth path. The quarter point element with traction singularity at the crack tip is applied to compact tension type specimens and two inclined slit problems under compression load. The maximum stress criterion which was originally derived for the crack initiation is extended to the analysis of the crack propagation. The predicted crack paths with 1/4 crack growth increment of initial crack length agree quite well with experimental results. It is found that the computed crack path of the boundary element analysis is not mainly affected by the crack increment length.

  • PDF

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.

Review of Factors Affecting IASCC Initiation of Stainless Steel in PWRs (원자로 내부구조물 균열개시 민감도에 미치는 영향인자 고찰)

  • Hwang, Seong Sik;Choi, Min Jae;Kim, Sung Woo;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.210-229
    • /
    • 2021
  • To safely operate domestic nuclear power plants approaching the end of their design life, the material degradation management strategy of the components is important. Among studies conducted to improve the soundness of nuclear reactor components, research methods for understanding the degradation of reactor internals and preparing management strategies were surveyed. Since the IGSCC (Intergranular Stress Corrosion Cracking) initiation and propagation process is associated with metal dissolution at the crack tip, crack initiation sensitivity was decreased in the hydrogenated water with decreased crack sensitivity but occurrence of small surface cracks increased. A stress of 50 to 55% of the yield strength of the irradiated materials was required to cause IASCC (Irradiation Assisted Stress Corrosion Cracking) failure at the end of the reactor operating life. In the threshold-stress analysis, IASCC cracks were not expected to occur until the end of life at a stress of less than 62% of the investigated yield strength, and the IASCC critical dose was determined to be 4 dpa (Displacement Per Atom). The stainless steel surface oxide was composed of an internal Cr-rich spinel oxide and an external Fe and Ni-rich oxide, regardless of the dose and applied strain level.