• Title/Summary/Keyword: Initial pressure method

Search Result 533, Processing Time 0.029 seconds

Analysis of Combustion and Flame Propagation Characteristics of LPG and Gasoline Fuels by Laser Deflection Method

  • Lee, Ki-Hyung;Lee, Chang-Sik;Ryu, Jea-Duk;Park, Gyung-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.935-941
    • /
    • 2002
  • This work is to investigate the combustion characteristics and flame propagation of the LPG (liquified petroleum gas) and gasoline fuel. In order to characterize the combustion processes of the fuels, the flame propagation and combustion characteristics were investigated by using a constant volume combustion chamber The flame propagation of both LPG and gasoline fuels was investigated by the laser deflection method and the high-speed Schlieren photography. The result of laser deflection method show that the error of measured flame propagation speed by laser method is less than 5% compared with the result of high-speed camera. The flame propagation speed of the fuel is increased with the decrease of initial pressure and the increase of initial temperature in the constant volume chamber. The results also show that the equivalence ratio has a grate effect on the flame speed, combustion pressure and the combustion duration of the fuel-air mixture.

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.

A Study on the Deformation of the Moving Pressure Plate in a Balanced Type Vane Pump (압력 평형형 베인 펌프의 가동 압력판 변형에 관한 연구)

  • 한동철;조명래;박신희;최상현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.277-285
    • /
    • 1998
  • This paper presents the deformation characteristics of the moving pressure plate in a balanced type vane pump that widely used automotive power steering systems. Moving pressure plate can control the clearance between rotor and plate in accordance with load pressure variation; it always guarantees that pump to have optimal volumetric efficiency. In this paper, firstly, we calculate the acting force on the pressure plate, which is used to determine the angular position and load condition for analyzing the deformation of pressure plate. Secondary, finite element method is used for the deformation analysis. As results of acting force analysis, it is found that maximum difference of forces occurs at angular position 28$\circ$ from the small arc center of cam ring and load pressure is a dominant factor to affect acting force variation. The deformation of pressure plate increases as load pressure increases. At high load pressure, the deformation of pressure plate becomes larger than the initial clearance between rotor and plate. Therefore, it is required to design the plate for controlling the deformation.

  • PDF

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.

The Estimation of Initial Elastic Modulus of Clay by Standard Consolidation Test (표준압밀시험에 의한 점토의 초기탄성계수 산정)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • Unlike artificially created homogeneous materials, the process of calculating the elastic modulus of natural soil involves the possibility of errors. Because the stress-strain behavior of soil is nonlinear, the secant modulus of elasticity is often used based on 1/2 of the stress at failure. Since soil has the property of changing its elastic modulus depending on the confining pressure, numerical analysis models that analyze its behavior inevitably include complex elements. The hyperbolic model, which relatively accurately simulates the behavior immediately after loading in soft ground, assumes that the stress-strain curve of the consolidated undrained triaxial test is hyperbolic and requires the slope of the tangent line at the starting point. However, the slope of the initial tangent in the stress-strain curve obtained from an actual triaxial test is difficult to have regularity according to changes in confining pressure. Additionally, due to the characteristics of a hyperbola, even small changes in related factors cause large changes in the hyperbola. Therefore, there is a lot of randomness in the process of calculating model parameters from the triaxial test results, which causes large differences in the results. Therefore, the method of calculating the initial elastic modulus by the consolidation test presented in this study is also used to verify the method by the triaxial test. It can be applied. However, since this study was applied to only one sample showing typical consolidation characteristics, it is necessary to check samples with various physical properties in the future.

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Optimization Design of a Waterproof Seal Cross-Section of Automotive Electrical Connectors (자동차 전장 커넥터 방수시일 단면의 최적설계)

  • Kang, KyuTae;Lee, ChaeEun;Kim, HoKyung
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.224-231
    • /
    • 2021
  • Recently, the waterproofing performance of high-voltage connectors in automotive vehicles has attracted increased interest. In this study, an optimal cross-sectional shape was derived to obtain uniform contact pressure and strain by considering stress relaxation problems caused by initial tension when mounting a seal. A high strain of 52.1 was distributed in the round region, owing to excessive initial tension. The finite element method (FEM) analysis indicated that the strain corresponding to the optimal initial tensile was 11. We adopted six design factors to optimize the seal cross-section and three factors as the main design factors. An orthogonal arrangement table was prepared using Minitab. FEM analyses of 16 study models were conducted to determine the optimized model. The contact pressure of the optimization model is the most evenly distributed while satisfying the waterproof performance of 0.47 MPa. Compared to the initial model, the difference in strain decreases from 35.5% to 19.6%. Finally, the derived cross-sectional shape can reduce the strain of the round region by 33.8% and the differences in the contact pressure at the upper and lower surfaces by 42% and 76%, respectively.

Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure (균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • Resisting strength of ring-stiffened cylindrical steel shell under uniform external pressure was evaluated by geometrically and materially nonlinear finite element method. The effects of shape and amplitude of geometric initial imperfection, radius to thickness ratio, and spacing of ring stiffeners on the resisting strength of ring-stiffened shell were analyzed. The resisting strength of ring-stiffened cylindrical shells made of SM490 obtained by FEA were compared with design strengths specified in Eurocode 3 and DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratios of cylindrical shell in the range of 250 to 500 were considered.

The effect of active and passive confining pressure on compressive behavior of STCC and CFST

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.161-171
    • /
    • 2020
  • In this paper, an experimental study was conducted on the compressive behavior of steel tube confined concrete (STCC) and concrete-filled steel tube (CFST) columns with active and passive confinement. To create active confinement in the STCC and CFST specimens, an innovative method was used in this study, in which by applying pressure on the fresh concrete, the steel tube was laterally pretensioned and the concrete core was compressed simultaneously. Of the benefits of this technique are improving the composite column behavior, without the use of additives and without the need for vibration, and achieving high prestressing levels. To achieve lower and higher prestressing levels, short and long term pressures were applied to the specimens, respectively. Nineteen STCC and CFST specimens in three groups of passive, short-term active, and long-term active confinement were subjected to axial compression, and their mechanical properties including the compressive strength, modulus of elasticity and axial strain were evaluated. The results showed that the proposed method of prestressing the STCC columns led to a significant increase in the compressive strength (about 60%), initial modulus of elasticity (about 130%) as well as a significant reduction in the axial strain (about 45%). In the CFST columns, the prestressing led to a considerable increase in the compressive strength, a small effect on the initial and secant modulus of elasticity and an increase in the axial strain (about 55%). Moreover, increased prestressing levels negligibly affected the compressive strength of STCCs and CFSTs but slightly increased the elastic modulus of STCCs and significantly decreased that of CFSTs.

Evaluation of Coefficient of Consolidation for Dilatory Dissipation Result of Piezocone Test (피에조콘 소산시험시 지연소산이 발생한 경우에 대한 압밀계수 평가 방법)

  • Ha, Tae-Gyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1328-1339
    • /
    • 2008
  • For a commonly used piezocone with a shoulder filter element, dilatory dissipation behavior, which shows an initial temporary increase in pore pressure, has been observed in overconsolidated cohesive soils. However, there is no appropriate way to estimate a consolidation parameter from a dilatory dissipation curve because currently available interpretation methods were developed based on the monotonic decrease of the excess pore pressure. In this study, the interpretation method for evaluation of coefficient of consolidation from a dilatory dissipation result of piezocone test was developed by performing the finite difference analysis on the dissipation after cone penetration. The distribution of the initial excess pore pressure induced by cone penetration, which is the core of the analysis, was estimated from the empirical modification of a solution proposed by cavity expansion theory and critical state concept. And the proposed interpretation method was applied to the field piezocone data and the results were compared to those obtained from laboratory tests. Its reliability was confirmed by the insignificant difference between the values of coefficient of consolidation from piezocone tests and laboratory consolidation tests.

  • PDF