• 제목/요약/키워드: Initial hydrostatic pressure

검색결과 40건 처리시간 0.024초

수압을 받는 원환보강원통의 최종강도에 대한 초기 형상결함과 잔류응력의 영향 (Effect of Initial Shape Imperfection and Residual Stress on the Ultimate Strength of Ring-Stiffened Cylinders under Hydrostatic Pressure)

  • 조상래;김승민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.139-143
    • /
    • 2001
  • Ring-stiffened cylinders are widely used as the pressure hull of submarines and underwater vehicles. For large ring-stiffened cylinders cylindrical shells are fbricated by cold rolling of flat plates and then welding of curved shells. After forming cylinders ring-stiffeners are welded on th the cylinders. Due to these cold roiling and welding initial shape imperfections and residual stresses exists in fabricated ring-stiffened cylinders. It is well known that the initial shape and material imperfections affect the ultimate strength of ring-stiffened cylinders significantly. In this paper previous researches on the effects of initial shape imperfections and residual stresses are briefly reviewed Recently a numerical analysis computer program was developed to predict the ultimate strength of ring-stiffened cylinders subjected to hydrostatic pressure, which is based on the Dynamic Relaxation technique. This program was employed to numerically investigate those effects. The numerical predictions were substantiated with relevant experimental results.

  • PDF

초고압 처리가 배추김치의 품질특성에 미치는 영향 (Effect of High Hydrostatic Pressure on the Quality of Chinese Cabbage Kimchi)

  • 김동원;박석준;박지용
    • 한국식품과학회지
    • /
    • 제33권5호
    • /
    • pp.545-550
    • /
    • 2001
  • Effects of high hydrostatic pressure on pH, titratable acidity, color, hardness and microorganisms of Chinese Cabbage Kimchi were investigated. Kimchi was pressurized at $200{\sim}600$ MPa for 5 min. There were no significant differences in color and hardness between control and pressurized Kimchi (p>0.05). Total aerobes and lactic acid bacteria were effectively inactivated by high hydrostatic pressure above 400 MPa. Changes in pH, titratable acidity, color, hardness and microbial counts for 4 weeks storage of Kimchi were investigated Kimchi was pressurized at 400 MPa for 5 min and stored at $4^{\circ}C$. The pH of control decreased to 3.94 but pressurized Kimchi maintained its initial pH value throughout the storage. The color of control showed significantly low values compared with pressureized Kimchi (p<0.05), but hardness was not significantly changed (p>0.05). Total aerobes and lactic acid bacteria in the control were reduced from the initial value of $10^8{\sim}10^9$ CFU/mL to $10^6$CFU/mL after 4 weeks storage. Whereas microbial counts in pressurized Kimchi was maintained about $10^3{\sim}10^4$ CFU/mL during storage.

  • PDF

수압을 받는 복합재 원통의 최종강도 실험 연구 (Experimental Study on the Ultimate Strength of Composite Cylinders under Hydrostatic Pressure)

  • 조상래;구정본;조종래;권진회;최진호;김현수
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.52-57
    • /
    • 2007
  • Composite material is one of the strongest candidates for deep see pressure hulls. Research regarding composite cylinders, subjected to hydrostatic pressure, has been ongoing for a couple of decades, abroad, but domestic research is very new. Experimental investigations seem necessary, in order to understand their structural behavior not only up to the ultimate limit state, but in the post-ultimate regime. That experimental information will be very helpful in the development of any theoretical methods or to substantiate any commercial numerical packages for structural analyses. In this study, ultimate strength tests on seven composite cylinders subjected to hydrostatic pressure are reported, which includes the fabrication method of models, mechanical properties of the material, initial shape imperfection measurements, test procedure, and strain and axial shortening measurements during the tests. The ultimate strengths of the models were compared with predictions of numerical analyses. The numerical predictions are higher than the test results. It seems necessary to improve the accuracy of the numerical predictions by considering the initial shape and material imperfections.

극세선 냉간 정수압 압출에서 금형과 윤활의 영향 (Effect of Die and Lubrication in Fine Wire Cold Hydrostatic Extrusion)

  • 나경환;박훈재;김승수;윤덕재;최태훈;김응주
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.225-230
    • /
    • 2002
  • As in most metal forming processes, die and lubrication are of vital importance in hydrostatic extrusion. An efficient die design and lubrication system selection reduce the pressure required for a given reduction ratio by lowering friction at the billet-die interface. In contrast to the conventional macroscopic extrusion, fine-wire fabrication requires higher extrusion pressure and effect of friction is much more significant. Forming fine Au, Ag, and Cu wire with hydrostatic extrusion process in cold condition, the effect of extrusion die angle, lubrication and billet's initial diameter was studied.

  • PDF

수압을 받는 원통형 실린더의 초기부정을 고려한 좌굴해석 (Buckling Analysis of Circular Cylinders with Initial Imperfection Subjected to Hydrostatic Pressure)

  • 노인식;류재원;임승재;조상래;조윤식
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.267-273
    • /
    • 2017
  • Pressure hulls of submerged structures are generally designed as circular cylinders, spheres or cones with form of axisymmetric shell of revolution to withstand the high external pressure of deep ocean. The compressive buckling (implosion) due to hydrostatic pressure is the main concern of structural design of pressure hull and many design codes are provided for it. It is well-known that the buckling behavior of thin shell of revolution is very sensitive to the initial geometric imperfections introduced during the construction process of cutting and welding. Hence, the theoretical solutions for thin shells with perfect geometry often provide much higher buckling pressures than the measured data in tests or real structures and more precise structural analysis techniques are prerequisite for the safe design of pressure hulls. So this paper dealt with various buckling pressure estimation techniques for unstiffened circular cylinder under hydrostatic pressure conditions. The empirical design equations, eigenvalue analysis technique for critical pressure and collapse behaviors of thin cylindrical shells by the incremental nonlinear FE analysis were applied. Finally all the obtained results were compared with those of the pressure chamber test for the aluminium models. The pros and cons of each techniques were discussed and the most rational approach for the implosion of circular cylinder was recommended.

초고압처리에 의한 동치미의 미생물, 효소 및 조직감의 변화 (Changes in Microorganisms, Enzymes and Texture of Dongchimi by High Hydrostatic Pressure Treatment)

  • 홍관표;박지용
    • 한국식품과학회지
    • /
    • 제30권3호
    • /
    • pp.596-601
    • /
    • 1998
  • 비열처리공법 중 하나로 새롭게 주목받고 있는 초고압 처리를 동치미에 적용하여 미생물의 살균정도, 효소 활성과 hardness의 변화를 관찰하였다. 제조한 동치미를 $30^{\circ}C$ 배양기에서 발효 적숙기라고 판단되는 pH 4.0까지 발효시킨 후, 이를 시료로 사용하여 $200{\sim}686\;MPa$ 범위의 압력에서 5분간 처리하였다. 무처리군의 균체수는 호기성 세균, 젖산균, 효모 및 곰팡이가 각각 $4.05{\times}10^8,\;3.25{\times}10^8,\;3.55{\times}10^4\;CFU/mL$ 존재하였으나, 호기성 세균은 600 MPa, 젖산균과 효모 및 곰팡이는 400 MPa 이상에서 완전히 살균되었다. 젖산균의 압력에 따른 내압성을 관찰해 본 결과 380 MPa에서 Leuconostoc mesenteroides가 유일하게 검출되어 가장 강한 내압성을 나타내었으며, 김치의 주 산패균으로 알려진 Lactobacillus plantarum은 300 MPa로 처리한 시료에서도 발견되지 않아 압력에 약한 균주로 판단되었다. 조직감에 관계하는 효소인 pectinesterase (PE)와 polygalacturonase (PG)는 압력에 의해 모두 활성이 증가하였다. 초고압 처리를 하지 않은 시료의 효소 활성을 100으로 했을 때, PE는 500 MPa에서 193으로 가장 활성이 높았으며, PG는 압력이 증가함에 따라 활성이 서서히 증가하여 686 MPa에서 191이었다. 동치미에 있는 무의 조직감은 초고압 처리했을 때 hardness가 증가하여 400 MPa에서 5분간 처리한 시료는 무처리군에 비해 약 0.065kg이 높았다.

  • PDF

심해 환경 하에서 내파 충격파를 받는 내압 선체의 동적 좌굴 평가 기법 (Dynamic Stability Assessment of Pressure Hull in Deep Sea against Implosion Pressure Pulse)

  • 노인식;조상래;조윤식
    • 대한조선학회논문집
    • /
    • 제57권4호
    • /
    • pp.198-206
    • /
    • 2020
  • In this study, the dynamic structural behavior of pressure vessels due to pressure pulse initiated by implosion of neighbouring airbacked equipments including Unmanned Underwater Vehicles (UUV), sensor system, and so on were dealt with for the structural design and safety assessment of pressure hulls of submarine. The dynamic buckling and collapse responses of pressure vessel in deep sea were investigated considering the effects of initial hydrostatic pressure and fluid-structure interactions. The governing equations for circular cylindrical shells were formulated theoretically assuming a relatively simple displacement fields and the derived nonlinear simultaneous ordinary differential equations were analysed by developed numerical solution algorithm. Finally, the introduced safety assessment procedures for the dynamic buckling behaviors of pressure hulls due to implosion pressure pulse were validated by comparing the theoretical analysis results with those of experiments for examples of simple cylinders.

수압을 받는 복합재 원통의 최종강도 실험 연구 (Experimental Study on the Ultimate Strength of Composite Cylinder under Hydrostatic Pressure)

  • 조상래;김현수;구정본;조종래;권진회;최진호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.154-157
    • /
    • 2006
  • Composite material is one of the strong candidates for deep see pressure hulls. Research regarding composite unstiffened or stiffened cylinders subjected to hydrostatic pressure has a couple of decades history abroad but domestic research is very new. Experimental investigations seem necessary to understand their structural behavior not only up to the ultimate limit state but in post-ultimate regime. Those experimental information will be very helpful to develop any theoretical methods or to substantiate any commercial numerical packages for structural analyses. In this study, ultimate strength tests on seven composite cylinders subjected to hydrostatic pressure are reported, which includes the fabrication method of models, material properties of the material, initial shape imperfection measurements, test procedure and strain and axial shortening measurements during the tests. The ultimate strengths of the models were compared with those of numerical analyses. The numerical predictions are higher than the test results. It is necessary to improve the accuracy of the numerical predictions.

  • PDF

Torsional wave dispersion in a bi-layered hollow cylinder with inhomogeneous initial stresses caused by internal and external radial pressures

  • Akbarov, Surkay D.;Bagirov, Emin T.
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.571-586
    • /
    • 2021
  • The present paper studies the influence of the inhomogeneous initial stresses in the bi-layered hollow cylinder and it is assumed that these stresses are caused by the hydrostatic pressures acting on the interior and outer free surfaces of the cylinder. The study is made by utilizing the version of the three-dimensional linearized theory of elastic waves in bodies with initial stresses for which the initial stress-strain state in bodies is determined within the scope of the classical linear theory of elasticity. For the solution to the corresponding eigenvalue problem, the discrete-analytical method is employed. Numerical results are presented and analyzed for concrete selected pairs of materials. According to these results and their analyses, it is established that, unlike homogeneous initial stresses, the influence of the inhomogeneous initial stresses on the torsional wave dispersion has not only quantitative but also qualitative character. For instance, in particular, it is established that as a result of the initial stresses caused by the hydrostatic pressure acting in the interior free surface of the cylinder, the cut-off frequency appears for the fundamental dispersive mode and the values of this frequency increase with the intensity of this pressure.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.