• 제목/요약/키워드: Initial angular velocity

검색결과 60건 처리시간 0.03초

회전유동에서의 관성진동 원인규명 (Onset of Inertial Oscillation in a Rotating Flow)

  • 박준상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2536-2539
    • /
    • 2008
  • A study has been made on how to occur inertial oscillations in a rotating flow. The flow is considered to be induced by differentially-rotating top and bottom disks with infinite radius. The top and bottom disks are assumed to be set in motion over a finite initial start-up time duration from initial solid body rotation ($\Omega$) to each finial state, i.e., the top disk is rotating at the angular velocity (${\Omega}+{\Delta}{\Omega}$) and the bottom disk (${\Omega}-{\Delta}{\Omega}$). The system Reynolds number, which is a reciprocal of conventional Ekman number in rotating flows, is very high so that a boundary layer flow near disks is pronounced. From a strict theoretical analysis, it is clearly found the fact that inertial oscillation in a rotating flow is caused by excessive input of torque during start-up phase. Above finding comes from the following physics of theoretical result: in the case of abrupt start-up within very shorter time-duration than spin-up time scale, the inertial oscillation is magnified but it could be completely depressed in the case of mildly accelerated start-up, i.e., start-up process being established over diffusion time scale.

  • PDF

Hemodynamic Characteristics Affecting Restenosis after Percutaneous Transluminal Coronary Angioplasty with Stenting in the Angulated Coronary Stenosis

  • Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Roh, Hyung-Woon;Cho, Min-Tae;Suh, Sang-Ho
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권1호
    • /
    • pp.13-23
    • /
    • 2003
  • Backgrounds: The present study in angulated coronary stenosis was to evaluate the influence of velocity and wall shear stress (WSS) on coronary atherosclerosis, the changes of hemodynamic indices following coronary stenting, as well as their effect of evolving in-stent restenosis using human in vivo hemodynamic parameters and computed simulation quantitatively and qualitatively. Methods: Initial and follow-up coronary angiographies in the patients with angulated coronary stenosis were performed (n=80). Optimal coronary stenting in angulated coronary stenosis had two models: < 50 % angle changed(model 1, n=43), > 50% angle changed group (model 2, n=37) according to percent change of vascular angle between pre- and post-intracoronary stenting. Flow-velocity wave obtained from in vivo intracoronary Doppler study data was used for in vitro numerical simulation. Spatial and temporal patterns of velocity vector and recirculation area were drawn throughout the selected segment of coronary models. WSS of pre/post-intracoronary stenting were calculated from three-dimensional computer simulation. Results: Follow-up coronary angiogram demonstrated significant difference in the percent of diameter stenosis between two groups (group 1: $40.3{\pm}30.2$ vs. group 2: $25.5{\pm}22.5%$, p<0.05). Negative WSS area on 3D simulation, which is consistent with re-circulation area of velocity vector, was noted on the inner wall of post-stenotic area before stenting. The negative WSS was disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2 (p<0.01) Conclusions: The present study suggests that hemodynamic forces exerted by pulsatile coronary circulation termed as WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. Moreover, geometric change, such as angular difference between pre / post-intracoronary stenting might give proper information of optimal hemodynamic charateristics for vascular repair after stenting.

  • PDF

Effects of Reagent Rotation on Stereodynamics Information of the Reaction O(1D)+H2 (v = 0, j = 0-5) → OH+H: A Theoretical Study

  • Kuang, Da;Chen, Tianyun;Zhang, Weiping;Zhao, Ningjiu;Wang, Dongjun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2841-2848
    • /
    • 2010
  • Quasiclassical trajectory (QCT) method has been used to investigate stereodynamics information of the reaction $O(^1D)+H_2{\rightarrow}\;OH$+H on the DK (Dobbyn and Knowles) potential energy surface (PES) at a collision energy of 23.06 kcal/mol, with the initial quantum state of reactant $H_2$ being set for v = 0 (vibration quantum number) and j = 0-5 (rotation quantum number). The PDDCSs (polarization dependent differential cross sections) and the distributions of P($\theta_r$), P($\phi_r$), P($\theta_r$, $\phi_r$) have been presented in this work. The results demonstrate that the products are both forward and backward scattered. As j increases, the backward scattering becomes weaker while the forward scattering becomes slightly stronger. The distribution of P($\theta_r$) indicates that the product rotational angular momentum j' tends to align along the direction perpendicular to the reagent relative velocity vector k, but this kind of product alignment is found to be rather insensitive to j. Furthermore, the distribution of P($\phi_r$) indicates that the rotational angular momentum vector of the OH product is preferentially oriented along the positive direction of y-axis, and such product orientation becomes stronger with increasing j.

Design of Multilayered Suspension Mechanism for Differential Type Mobile Robot

  • Park, Jin-Ho;Roh, Se-Gon;Park, Ki-Heung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.859-864
    • /
    • 2003
  • This paper presents a design for the novel suspension mechanism of a two-wheeled mobile robot having two casters which is used for indoor environment. Although the indoor environment is less rough than the outdoor one, the fixed caster mechanism has some problems such as causing the robot to be immovable because robot's driving wheels do not have contact with the ground. Therefore, we tried installing a spring-damper suspension mechanism to keep driving capability and to remove pitching phenomenon. However, this suspension mechanism also has the problem, which the robot body inclined by disturbances does not return to the initial position. To deal with above problems and to accomplish desired performances, we designed the Multilayered Suspension Mechanism, which has springs and dampers working partially according to the inclined angle and angular velocity of robot body concerned with pitching. To analyze design, the equations of motion describing their dynamics were developed. Using the equations, simulation results show the improved performance. We confirm the usefulness of the Multilayered Suspension Mechanism by construction and test of a actual prototype.

  • PDF

저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구 (A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines)

  • 이돈출;김상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF

Optimal Trajectory Generation for Biped Robots Walking Up-and-Down Stairs

  • Kwon O-Hung;Jeon Kweon-Soo;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.612-620
    • /
    • 2006
  • This paper proposes an optimal trajectory generation method for biped robots for walking up-and-down stairs using a Real-Coded Genetic Algorithm (RCGA). The RCGA is most effective in minimizing the total consumption energy of a multi-dof biped robot. Each joint angle trajectory is defined as a 4-th order polynomial of which the coefficients are chromosomes or design variables to approximate the walking gait. Constraints are divided into equalities and inequalities. First, equality constraints consist of initial conditions and repeatability conditions with respect to each joint angle and angular velocity at the start and end of a stride period. Next, inequality constraints include collision prevention conditions of a swing leg, singular prevention conditions, and stability conditions. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot model that consists of seven links in the sagittal plane. The optimal trajectory is more efficient than that generated by the Modified Gravity-Compensated Inverted Pendulum Mode (MGCIPM). And various trajectories generated by the proposed GA method are analyzed from the viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure

  • Ebrahimi, Saeed;Salahshoor, Esmaeil;Moradi, Shapour
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.691-702
    • /
    • 2017
  • Clearances are essential for the assemblage of mechanisms to allow the relative motion between the joined bodies. This clearance exists due to machining tolerances, wear, material deformations, and imperfections, and it can worsen the mechanism performance when the precision and smoothly-working are intended. Energy is a subject which is less paid attention in the area of clearance. The effect of the clearance on the energy of a flexible slider-crank mechanism is investigated in this paper. A clearance exists in the joint between the slider and the coupler. The contact force model is based on the Lankarani and Nikravesh model and the friction force is calculated using the modified Coulomb's friction law. The hysteresis damping which has been included in the contact force model dissipates energy in clearance joints. The other source for the energy loss is the friction between the journal and the bearing. Initial configuration and crank angular velocity are changed to see their effects on the energy of the system. Energy diagrams are plotted for different coefficients of friction to see its influence. Finally, considering the coupler as a flexible body, the effect of flexibility on the energy of the system is investigated.

MORETON WAVES RELATED TO THE SOLAR ERUPTION OCCURRED ON 3 JUNE 2012 AND 6 JULY 2012

  • ADMIRANTO, AGUSTINUS GUNAWAN;PRIYATIKANTO, RHOROM
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.57-58
    • /
    • 2015
  • In this study, we present geometrical and kinematical analysis of Moreton wave observed in 2012 June 3rd and July 6th, recorded in H-${\alpha}$ images of Global Oscillation Network Group (GONG) archive. These large-scale waves exhibit different features compared to each other. The observed wave of June 3rd has angular span of about $70^{\circ}$ with a diffuse wave front associated to NOAA active region 11496. It was found that the propagating speed of the wave at 17:53 UT is about $931{\pm}80km/s$. The broadness nature of this Moreton wave can be interpreted as the vertical extension of the wave over the chromosphere. On the other hand, the wave of July 6th associated with X1.1 class are that occurred at 23:01 UT in AR NOAA11515. From the kinematical analysis, the wave propagated with the initial velocity of about $994{\pm}70km/s$ which is in agreement with the speed of coronal shock derived from type II radio burst, v ~ 1100 km/s. These two identified waves add the inventory of the large-scale waves observed in 24th Solar Cycle.

묘박 중 외력에 의한 선체의 운동 특성 (Characteristic of hull motion due to external forces at anchor)

  • 이창헌
    • 수산해양기술연구
    • /
    • 제59권2호
    • /
    • pp.135-144
    • /
    • 2023
  • In order to provide basic data to increase the efficiency and stability of seamanship at anchoring, the characteristics of the hull motion including dragging anchor due to external forces were observed at Mokpo and Jinhae anchorage for the avoidance of the typhoon. As a result, it is necessary to check the embedding motion and holding power of the anchor according to at initial position to decrease dragging anchor. Dragging anchor at anchorage seems to have been easily caused according to discrepancy between embedded anchor flukes and the towing direction due to the change in wind direction, rather than the wind speed. This discrepancy, thus, should be considered when anchoring. This test vessel with a small radius of curvature of the stem is relatively vulnerable to the influence of wind direction and wind speed, so it is easy to cause a decrease in the holding power due to an increase in the rate of turn. When the current speed is greater than or equal to 1 knot, the range of the rate of turn is reduced resulting in a relatively increased holding power. In addition, during the swing, the tension of the chain was high according to the angular velocity change of heading at three-quarters of the swing length rather than the left and right ends.

지진에 의한 측지학적 지각변동 분석을 위한 GNSS 자료 전처리 연구 (A Study on GNSS Data Pre-processing for Analyzing Geodetic Effects on Crustal Deformation due to the Earthquake)

  • 손동효;김두식;박관동
    • 대한공간정보학회지
    • /
    • 제23권1호
    • /
    • pp.47-54
    • /
    • 2015
  • 이 논문에서는 지진에 의한 지각변동 분석에서 측지학적 요소만을 구분하고자 하는 목적으로 GNSS 자료를 전처리하는 전략을 연구하였다. 이를 위해 GNSS 자료처리 결과의 해석에 앞서 GNSS 좌표 시계열에서 나타나는 위신호들을 검출하고 제거하였다. GNSS 관측소는 한반도가 포함된 큰 지각판 위에 위치하므로 판의 운동으로 인한 속도가 좌표 시계열에 포함된다. 그리고 일부 관측소 주변에 위치한 나무들은 계절에 따라 성장변화가 일어나기 때문에 계절적 신호특성이 GNSS 좌표 시계열에 반영된다. 따라서 오일러축에 의한 지각판 운동효과를 정확히 제거하기 위해 축의 위치와 각속도를 한반도 지각판에 맞게 새롭게 추정하였고 이에 대한 검증을 수행하였다. 그리고 1년 주기로 나타나는 계절변동 신호를 추정해 각 관측소의 좌표시계열에 반영하였다. 두 효과를 제거함으로써 지진에 의한 영향을 측지학적으로 분석할 수 있다. 이를 이용해 2011년 동일본 대지진에 의한 지각변위 예비 분석을 수행하였다.