• Title/Summary/Keyword: Initial Texture

Search Result 316, Processing Time 0.02 seconds

Effect of Initial Textures on the Plane Strain Stretching (판재의 초기집합조직이 평면변형률 스트레칭 변형에 미치는 영향)

  • Bae, Seok-Yong;Lee, Yong-Sin
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.459-464
    • /
    • 1998
  • Effect of the several initial textures such as random texture, rolling texture and cube texture, on the plane strain stretching was studied by interpretation of the finite element method. The calculation of yield locus indicated that the sheet oriented in the cube texture exhibits easy yielding on uniaxial stress state whereas the sheet having either a random or the rolling texture exhibits easy yielding on shear deformation. Upon stretching tests, the thickness strain at the center region contacting the punch was identical regardless of the initial textures while the dependence of the thickness strain on the initial texture was found in the other regions. In general punch loads required or the sheet with an initial cube texture was as expected from calculated yield locus, lower than those for the others.

  • PDF

Effect of Initial Texture on the Development of Goss Orientation of Asymmetrically Rolled Steel Sheets (비대칭 압연한 강판의 GOSS 방위 발달에 미치는 초기 집합조직의 영향)

  • Lee, C.W.;Jeong, H.T.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The Goss texture component of {110}<001> is well known as one of the best texture components to improve the magnetic properties of electrical steel sheets. The small amount of the Goss texture component is obtained at the surface of the steel sheet by shear deformation due to friction between the steel sheet and the roll during conventional symmetric rolling. This study aims to identify a method to obtain high intensity of the Goss texture component not only at the surface but in the whole layer of the steel sheet by shear deformation of asymmetric rolling. Low carbon steel sheets, which have different initial texture, were asymmetrically rolled by about 50%, 70%, and 80%. The pole figures of the top, center, and bottom layers of the initial and asymmetrically rolled low carbon steel sheets were measured by an X-ray diffractometer. Based on the measured pole figures of these samples, the intensities of the main texture components were analyzed for the initial and asymmetrically rolled low carbon steel sheets. As a result, the initial low carbon steel sheet with the γ-fiber component showed a higher intensity of the Goss texture component in the whole layer than the steel sheet with other texture components after asymmetric rolling.

Effects of Initial Anisotropy in the Plane Sheet on Stretching Process (판재의 초기 이방성이 스트레칭 성형에 미치는 영향)

  • 배석용;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.242-245
    • /
    • 1998
  • Effects of the anisotrpy due to the initial textures in the plane sheet on plane strain punch stretching has been investigated. In this study, the anisotropy from textures in the sheet is incoporated into the finite element process model by combining the theory of crstal plasticity. Three different textures such as random texture, plane strain compression texture and cube texture are considered. Variations of puch loads as well as thickness distributions of the sheets with three different initial textures are investigated.

  • PDF

Simulation of Texture Evolution in DP steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달 시뮬레이션)

  • Song, Y.S.;Han, S.H.;Chin, K.G.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.130-133
    • /
    • 2008
  • The formability of DP steels can be affected by not only initial texture but also deformation texture evolved during plastic deformation. To investigate the evolution of deformation texture during deep drawing, deep drawing process for DP steels was carried out experimentally. A rate sensitive polycrystal model was used to predict texture evolution during deep drawing process. In order to evaluate the strain path during deep drawing, a steady state was assumed in the flange part of deep drawn cup. A rate sensitive polycrystal model successfully predicted the texture development in DP steels during deep drawing process. It was found that the final stable orientations were strongly dependent on the initial location in the blank.

  • PDF

Effect of Initial Texture on the Twinning Formation of AZ31 Mg Alloy (AZ31 Mg 합금의 쌍정 형성에 미치는 Initial Texture의 영향)

  • Lee, Byoung-Ho;Kim, Yong-Woo;Lee, Chong-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.114-117
    • /
    • 2007
  • In the present study, the effects of initial texture on the twinning formation of AZ31 Mg rolled sheet was investigated. Uniaxial compression tests were performed on samples cut along the normal direction and rolling direction of rolled AZ31 Mg alloy sheet at various temperatures (RT, 200, 250, 300, 350, $400^{\circ}C$) with the 0.01/s strain rate. Pole figure of rolling planes showed that basal planes of most gain were located parallel to the rolling direction. After compression test, microstructures and stress-strain curves results indicated that active deformation twining occurred only at the specimen cut along the rolling direction. The slip-twin transition with the increase of temperature was also investigated.

  • PDF

Behavior of Initial Texture During Deep Drawing of AA1050 Sheets (디프드로잉시 AA1050판재의 초기 집합조직 거동에 관한 연구)

  • Choe, Si-Hun;Jo, Jae-Hyeong;O, Gyu-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.570-574
    • /
    • 1998
  • The texture evolution during deep drawing of AA1050 sheets was experimentally investigated and the lattice rotation rate was predicted using rate sensitive model with full constraints boundary conditions. The measured textures are dependent on the amount of the flange deformation and the initial crystal orientations. In the specimen parallel to RD the initial crystal orientations and the D component rotated toward the Cu component and the initial crystal orientations along the $\alpha$ fiber rotated toward the G {1 1 0}<0 0 1> and P {1 1 0} <1 1 1> components during deep drawing. In the specimen parallel to $45{\circ}$ with respect to RD the initial crystal orientations around the D component rotated about ND and the initial crystal orientations along the ${\alpha}$ fiber also rotated toward the (1 1 0) [2 3] and (1 1 0)[2 7] components about ND. In the specimen parallel to TD. the initial crystal orientations around the D component rotated toward the rotated cube and the initial crystal orientations along the ${\alpha}$ fiber rotated toward the {1 1 0} <1 1 3> component.

  • PDF

Effects of the Initial Texture on Formability in Aluminum Sheet Stretching (알루미늄 판재 스트래칭에서 초기 집합조직이 성형성에 미치는 영향)

  • Sim K. S.;Kim Y. I.;Lee Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.62-65
    • /
    • 2001
  • The effects of the initial torture of workpiece as well as the process conditions such as punch speed and lubrication on the formablity of sheet stretching are investigated by experiments. Two types of the initial textures of aluminum sheet plane strain compression torture and recrystallization texture are chosen since those are the most common in practice. Punch loads vs depth and thickness strain distributions along radial directions having the slope of $0^{\circ},\;45^{\circ},\;90^{\circ}$ with rolling directions are reported for hemishperical punch stretchings under a variety of process conditions.

  • PDF

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA1050 Al Sheet (열간 비대칭 압연한 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.287-293
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep drawability of the Al sheet. This study investigated the increase in the plastic strain ratio and the texture change of AA1050 Al sheet after the hot asymmetric rolling. The average plastic strain ratio of initial AA1050 Al sheets was 0.41. After 84% hot asymmetric rolling at $400^{\circ}C$, the average plastic strain ratio was 0.77. The average plastic strain ratio of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1.9 times higher than that of initial AA1050 Al sheet. The ${\mid}{\Delta}R{\mid}$ of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1/2 times lower than that of initial AA1050 Al sheet. This result is due to the development of the intensity of the ${\gamma}-fiber$ texture and the decrease of the intensity of {001}<100> texture after the hot asymmetric rolling of AA1050 Al sheet.

Effects of Deformation Conditions on Microstructure Formation Behaviors in High Temperature Plane Strain Compressed AZ91 Magnesium Alloys (고온 평면변형된 AZ91 마그네슘 합금의 미세조직 및 집합조직의 형성거동)

  • Minho Hong;Yebin Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • To investigate the effect of deformation condition on microstructure and texture formation behaviors of AZ91 magnesium alloy with three kinds of initial texure during high-temperature deformation, plane strain compression tests were carried out at high-temperature deformation conditions - temperature of 673 K~723 K, strain rate of 5 × 10-3s-1, up to a strain of -1.0. To clarify the texture formation behavior and crystal orientaion distribution, X-ray diffraction and EBSD measurement were conducted on mid-plane section of the specimens after electroltytic polishing. As a result of this study, it is found that the main component and the accumulation of pole density vary depending on initial texture and deformation caondition, and the formation and development basal texture components ({0001} <$10\bar{1}0$>) were observed regardless of the initial texure in all case of specimens.

Texture Evolution in Ni Substrate Prepared by Powder Metallurgy and Casting Methods

  • Lim, Jun-Hyung;Kim, Kyu-Tae;Park, Eui-Cheol;Joo, Jin-Ho;Kim, Hyoung-Sub;Lee, Hoo-Jeong;Jung, Seung-Boo;Nah, Wan-Soo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1249-1250
    • /
    • 2006
  • Cube textured Ni substrate were fabricated for YBCO coated conductors from the initial specimens prepared by powder metallurgy (P/M) and casting and the effects of annealing temperature and reduction ratio on texture formation and microstructural evolution were evaluated. The initial specimens were rolled and then annealed in the temperature at $600^{\circ}C{\sim}1200^{\circ}C$. A strong cube texture formed for P/M substrate, and the degree of texture did not significantly vary with annealing temperature of $600^{\circ}C{\sim}1100^{\circ}C$. On the other hand, the texture of casting substrate was more dependent on the annealing temperature and twin texture and several minor texture components started to form at $1000^{\circ}C$.

  • PDF