• Title/Summary/Keyword: Initial Strain

Search Result 1,353, Processing Time 0.028 seconds

Studies on the Brewing of Apple Wine -Culture Conditions of a Cider Yeast, Saccharomyces sp. R-11 on the Synthetic Medium (사과주(酒) 양조(釀造)에 관한 연구(硏究) -사과주효모(酒酵母) Saccharomyces sp. R-11의 합성배지((合成培地)에서의 배양(培養) 조건(條件)-)

  • Chung, Ki-Taek;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.10 no.2
    • /
    • pp.75-83
    • /
    • 1982
  • As a primary study for cell growth and alcohol production of a cider yeast, Saccharomyces sp. R-11, cultural and nutritional characteristics of the strain were investigated. The results obtained were as follows: The optimum culture medium for this strain was a synthetic medium, Henneberg B, and sucrose was the best carbon source for yeast growth and alcohol production. Optimum sugar concentrations for yeast growth and alcohol production were 15% and 25%, respectively. Optimum pH and temperature of the basal medium for growth of this strain were 4.5 and $30^{\circ}C$ respectively. The yeast growth was enhanced by the addition of 100 ppm of $Mg^{2+}$, but significantly inhibited by the addition of 100 ppm of $Co^{2+}$. Lower temperature and maintenance of optimum pH for yeast growth increased the final alcohol concentration. Under optimum condition for cell growth at stationary culture, generation time and specific growth rate of the strain were 7.5 hr and 0.092 $hr^{-1}$, respectively. At 8% initial alcohol concentration, yeast growth was inhibited about 50% and this strain could not be grown at more than 12% initial alcohol. The strain could be grown at less than 125ppm $SO_2$without alcohol addition, and at less than 75 ppm $SO_2$ with 8% initial alcohol. The higher sulfur dioxide concentration of a medium, the longer lag phase in yeast growth was observed. This strain could induced alcoholic fermentation at less than 10% initial alcohol concentration with 0 and 25 ppm $SO_2$, at less than 8% initial alcohol with 50 and 75 ppm $SO_2$, and at less than 6% initial alcohol with 100 and 125 ppm $SO_2$.

  • PDF

Effects of the Freeze/Thaw Process on the Strength Characteristics of Soils(1) (동결-융해작용이 흙의 제강도특성에 미치는 영향(I))

  • 유능환;박승법
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.43-53
    • /
    • 1989
  • In this research programs, a series test was conducted to show the effects of freeze/thaw process on the various soil properties. The tests were carried out taken from the west sea shore of Korean peninsular and the west sea shore of Scotland, and their results are as follows; 1. There was a positive total heave in a freezing run, although water may he expelled for the sample initially. The water flow must he reverse' from expulsion to intake. 2. The confining pressure had an overriding influence on the heave and frost penetration, a sudden change of the axial strain at failure with strain rate was observed occuring at a strain rate between 10-5 and 10-6, and the initial friction angle of frozen clay was appeared zero. 3. There was shown a significant decrease in liquid limit of soil which was subjected to freeze/thaw process for the initial value of about 20% because of soil particles aggregation. 4. The cyclic freeze/thaw caused a sinificant reduction in shear strength and its thixotropic regain. The frozen/thawed soil exibited negative strength regain, particularly at high freeze/thaw cycles. 5. The freezing temperature greatly influenced on the failure strength of soils and this. Trend was more pronounced the lower the freezing temperature and shown the ductile failure with indistinct peaks.

  • PDF

Yield and Fracture of Paper

  • Park, Jong-moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.57-72
    • /
    • 1999
  • Traditional theories of the tensile failure of paper have assumed that uniform strain progresses throughout the sheet until an imperfection within the structure causes a catastrophic break. The resistance to tensile elongation is assumed to be elastic , at first, throughout the structure, followed by an overall plastic yield. However, linear image strain analysis (LISA) has demonstrated that the yield in tensile loading of paper is quite non-uniform throughout the structure, Traditional theories have failed to define the flaws that trigger catastrophic failure. It was assumed that a shive or perhaps a low basis weight area filled that role. Studies of the fracture mechanics of paper have typically utilized a well-defined flaw around which yield and failure could be examined . The flaw was a simple razor cut normal to the direction of tensile loading. Such testing is labeled mode I analysis. The included fla in the paper was always normal to the tensile loading direction, never at another orientation . However, shives or low basis weight zones are likely to be at random angular orientations in the sheet. The effects of angular flaws within the tensile test were examined. The strain energy density theory and experimental work demonstrate the change in crack propagation from mode I to mode IIas the initial flaw angle of crack propagation as a function of the initial flaw angle is predicted and experimentally demonstrated.

  • PDF

Shear Behavior of Polymer Cement High Strength Concrete Beams Mixed with Steel Fiber (강섬유 혼입 폴리머 시멘트 고강도 콘크리트 보의 전단거동)

  • 곽계환;박종건;곽경헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.93-102
    • /
    • 2002
  • Steel fiber and polymer are used widely for reinforcement material of RC structures because of its excellences of the durability, serviceability as well as mechanical properties. The purpose of this study is to investigate the shear behavior of polymer cement high strength concrete beams mixed with steel fiber. The compressive strength of concrete was based on the 100$\times$200 mm cylinder specimens. The compressive strength of concrete are 320$kgf/cm^2$, 436 $kgf/cm^2$ and 520 $kgf/cm^2$ in the 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. Also, load-strain and load-deflection examined. During the test cracks were sketched against the load values according to the growth of crack. result are as follows; (1) The failure modes of the specimens are increased in rigidity and durability with mixing steel fiber and polymer. (2) The load of initial crack was similar a theory of shear-crack strength. (3) The deflection and strain at failure load of Polymer-steel fiber high strength concrete beams were increased, improving the brittleness of the high strength concrete.

An Experimental Study on Shear Behavior of Polymer-Steel Fibrous High Strength Concrete Beams (폴리머-강섬유를 혼입한 고강도 콘크리트보의 전단거동에 관한 실험적 연구)

  • 곽계환;조선정;김원태;조한용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.601-608
    • /
    • 2000
  • Steel fiber and Polymer are used widely for the reinforcement material of RC structures because of its excellence of durability, serviceability as well as mechanical properties. Polymer-Steel fibrous high strength concrete beam's input ratio are 1.0%. The shear span-to-depth ratio are 1.5, 2.8 and 3.6, compressive strength of specimens 320kg/㎠, 436kgf/㎠ and 520kgf/㎠ in 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural crack and of diagonal crack, from which crack patte군 and fracture modes are earned. Also, stress-strain, load-strain and load-deflection are examined during the test cracks(shear crack, flexural crack, and diagonal tension crack), when the load values are sketched according to the growth of crack. Result are as follows; (1) The failure modes of the specimens increase in rigidity and durability in accordance with the increase of mixing steel fiber and polymer. (2) The load of initial crack was the same as the theory of shear-crack strength (3) Polymer-Steel fibrous high strength concrete beams have increased the deflection and strain at failure load, improving the brittleness of the high strength concrete. (4) In this result of study, an additional study need to make a need formular because the study is different from ACI formular and Zsutty formular.

  • PDF

The effect of active and passive confining pressure on compressive behavior of STCC and CFST

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.161-171
    • /
    • 2020
  • In this paper, an experimental study was conducted on the compressive behavior of steel tube confined concrete (STCC) and concrete-filled steel tube (CFST) columns with active and passive confinement. To create active confinement in the STCC and CFST specimens, an innovative method was used in this study, in which by applying pressure on the fresh concrete, the steel tube was laterally pretensioned and the concrete core was compressed simultaneously. Of the benefits of this technique are improving the composite column behavior, without the use of additives and without the need for vibration, and achieving high prestressing levels. To achieve lower and higher prestressing levels, short and long term pressures were applied to the specimens, respectively. Nineteen STCC and CFST specimens in three groups of passive, short-term active, and long-term active confinement were subjected to axial compression, and their mechanical properties including the compressive strength, modulus of elasticity and axial strain were evaluated. The results showed that the proposed method of prestressing the STCC columns led to a significant increase in the compressive strength (about 60%), initial modulus of elasticity (about 130%) as well as a significant reduction in the axial strain (about 45%). In the CFST columns, the prestressing led to a considerable increase in the compressive strength, a small effect on the initial and secant modulus of elasticity and an increase in the axial strain (about 55%). Moreover, increased prestressing levels negligibly affected the compressive strength of STCCs and CFSTs but slightly increased the elastic modulus of STCCs and significantly decreased that of CFSTs.

Movement of Zucchini yellow mosaic vims Involved in Symptom Severity on Zucchini Squash

  • Park, Seung-Kook;Yoon, Ju-Yeon;Park, Sun-Hee;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.19 no.4
    • /
    • pp.217-220
    • /
    • 2003
  • Zucchini squash (Cucurbita pepo cv. Black Beauty) plants infected with A strain of Zucchini yellow mosaic virus (ZYMV-A) isolated from a hollyhock plant showed systemically severe mosaic symptom, similar to previously established Cu strain of ZYMV. However, initial symptom of squash infected by ZYMV-A strain was generally more severe than those infected by ZYMV-Cu. Using leaf-detachment assay, examination of kinetics of accumulation of the coat protein (CP) in systemic loaves of squash plants showed that CPs of ZYMV-A appeared earlier than those of ZYMV-Cu. However, both ZYMV-A and ZYMV-Cu showed similar kinetics of CP accumulation 7 days post-inoculation. These results indicate that different rates and initial severity of systemic symptom development were due to differences in the rate of movement rather than vims replication.

Parameter Study for the Analysis of Impact Characteristics considering Dynamic Material Properties (동적 물성치를 고려한 V.I. 충격인자의 영향 분석)

  • Lim, J.H.;Song, J.H.;Huh, H.;Park, W.J.;Oh, I.S.;Choe, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.945-950
    • /
    • 2001
  • Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics. Because the closing velocity is 1-3m/s, the deformation of the material of electrodes depends on the strain rate and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial offset of a wipe spring and virtual fixed spring constant.

  • PDF

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

Characterization of Non-linear Consolidation of Dredged Soil from Incheon Area (인천 지역 준설토의 비선형 압밀특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1693-1706
    • /
    • 2008
  • It is of importance to determine the zero effective stress void ratio($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail.

  • PDF