• 제목/요약/키워드: Initial Rainfall

검색결과 233건 처리시간 0.028초

농촌유역에서의 초기강우손실 특성분석과 계수 산정식 개발 - 금강.삽교천 중소유역을 중심으로- (Characteristic Analysis of the Coefficient of Initial Abstraction and Development of its Formular in the Rural Watersheds - for the Small-Medium Watersheds in the Geum and Sapkyo River -)

  • 김태철;이정선
    • 한국농공학회논문집
    • /
    • 제50권6호
    • /
    • pp.3-12
    • /
    • 2008
  • It is important to estimate accurate effective rainfall to analyse flood flow and long-term runoff for the rational planning, design, and management of water resource. The initial abstraction is also important to estimate effective rainfall. The Soil Conservation Service (SCS) has developed a procedure and it has been most commonly applied to estimate effective rainfall. But the SCS method still has weak points, because of unnatural assumptions such as antecedent moisture conditions and initial abstraction. The coefficient of initial abstraction(K) is depending on the soil moisture condition and antecedent rainfall. The maximum storage capacity of Umax which is calibrated by stream flow data in the proposed watershed was derived from the DAWAST(DAily WAtershed STreamflow) model. The values of K obtained from 69 storm events at the five watersheds are ranging from 0.133 to 0.365 and its mean value is 0.207. Effective rainfall could be estimated more reasonably by introducing new concept of initial abstraction. The equation of $K=0.076Sa^{0.255}$ was recommended instead of 0.2 and it could be applicable to the small-medium rural watersheds.

The Effects of Typhoon Initialization and Dropwindsonde Data Assimilation on Direct and Indirect Heavy Rainfall Simulation in WRF model

  • Lee, Ji-Woo
    • 한국지구과학회지
    • /
    • 제36권5호
    • /
    • pp.460-475
    • /
    • 2015
  • A number of heavy rainfall events on the Korean Peninsula are indirectly influenced by tropical cyclones (TCs) when they are located in southeastern China. In this study, a heavy rainfall case in the middle Korean region is selected to examine the influence of typhoon simulation performance on predictability of remote rainfall over Korea as well as direct rainfall over Taiwan. Four different numerical experiments are conducted using Weather Research and Forecasting (WRF) model, toggling on and off two different improvements on typhoon in the model initial condition (IC), which are TC bogussing initialization and dropwindsonde observation data assimilation (DA). The Geophysical Fluid Dynamics Laboratory TC initialization algorithm is implemented to generate the bogused vortex instead of the initial typhoon, while the airborne observation obtained from dropwindsonde is applied by WRF Three-dimensional variational data assimilation. Results show that use of both TC initialization and DA improves predictability of TC track as well as rainfall over Korea and Taiwan. Without any of IC improvement usage, the intensity of TC is underestimated during the simulation. Using TC initialization alone improves simulation of direct rainfall but not of indirect rainfall, while using DA alone has a negative impact on the TC track forecast. This study confirms that the well-suited TC simulation over southeastern China improves remote rainfall predictability over Korea as well as TC direct rainfall over Taiwan.

분포형 FLO-2D 수문모형에서 초기토양함수가 유출결과에 미치는 영향 (Impacts of Initial Soil Moisture on Hydrologic Outflow in a Distributed FLO-2D Model)

  • 이길하
    • 한국환경과학회지
    • /
    • 제30권8호
    • /
    • pp.613-619
    • /
    • 2021
  • Soil water enters the atmosphere via evapotranspiration, where it transforms into atmospheric water vapor and plays important role in the surface-atmosphere energy exchange. Soil conditions have a direct influence on the effective rainfall, and initial soil moisture conditions are important for quantitatively evaluating the effective rainfall in a watershed. To examine the sensitivity of the initial saturation to hydrologic outflow, a two-dimensional distributed FLO-2D hydrologic model was applied to a small watershed. The initial saturation was set to 0.3, 0.5, and 0.7 and the obtained results were compared. The Green-ampt model was chosen to calculate the penetration loss. Depending on the initial soil moisture, the peak flow rate varied by up to 60%, and the total water volume in the watershed by approximately 40%.

Development of an Event Rainfall-Runoff Model in Small Watersheds

  • Lee, Sang-Ho;Lee, Kil-Seong
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.81-98
    • /
    • 1995
  • A linear reservoir rainfall-runoff system was developed as a rainfall-runoff event simulation model. It was achieved from large modification of runoff function method. There are six parameters in the model. Hydrologic losses consist of some quantity of initial loss and some ratio of rainfall intensity followed by initial loss. The model has analytical routing equations. Hooke and Jaeves algorithm was used for model calibration. Parameters were estimated for flood events from '84 to '89 at Seomyeon and Munmak stream gauges, and the trends of major parameters were analyzed. Using the trends, verifications were performed for the flood event in September 1990. Because antecedent rainfalls affect initial loss, future researches are required on such effects. The estimation method of major parameters should also be studied for real-time forecasting.

  • PDF

하수관거 통수능 해석을 위한 Huff 모형과 ABM 법의 적용성 분석 (Applicability of Huff Model & ABM Method for Discharge Capacity of Sewer Pipe)

  • 현인환;전승희;김두일
    • 상하수도학회지
    • /
    • 제36권4호
    • /
    • pp.229-237
    • /
    • 2022
  • The sewer capacity design have been based on the Huff model or the rational equation in South Korea and often failed to determine optimal capacity, resulting in frequent urban flooding or over-sizing. A time distribution of rainfall (i.e., Huff or ABM method) could be used instead of a rainfall hyetograph obtained from statistical analysis of previous rainfalls. In this study, the Huff method and the ABM method, which predict the time distribution of rain intensity, which are widely used to calculate sewage pipe drainage capacity using the SWMM, were compared with the standard rainfall intensity hyetograph of Seoul. If the rainfall duration was 30 minutes to 180 minutes, the rainfall intensity value calculated by the Huff model tended to be less than the rainfall intensity value of the standard rainfall intensity in the initial 5-10 minutes. As a result, more than 10% to 30% of under-design would be made. In addition, the rainfall intensity value calculated by the Huff model from the section excluding the initial 5-10 minutes of rainfall to the rainfall duration was calculated larger than the value using the standard rainfall intensity equation, which would result in an over-design of 10% to 30%. In the case of a relatively long rainfall duration of 360 minutes (6 hours) to 1,440 minutes (24 hours), it showed an lower rainfall intensity of 60 to 90% in the early stages of rainfall, but the problem of under-design had been solved as the rainfall duration time had elapsed. On the other hand, in the alternating block method (ABM) method, it was found that the rainfall intensity at the entire period at each assumed rainfall duration accurately matched the standard rainfall intensity hyetograph of Seoul.

분석자료의 분해능과 3DVAR 적용에 따른 WRF모의 민감도: 사례 연구 (Sensitivities of WRF Simulations to the Resolution of Analysis Data and to Application of 3DVAR: A Case Study)

  • 최원;이재규;김유진
    • 대기
    • /
    • 제22권4호
    • /
    • pp.387-400
    • /
    • 2012
  • This study aims at examining the sensitivity of numerical simulations to the resolution of initial and boundary data, and to an application of WRF (Weather Research and Forecasting) 3DVAR (Three Dimension Variational data Assimilation). To do this, we ran the WRF model by using GDAS (Global Data Assimilation System) FNL (Final analyses) and the KLAPS (Korea Local Analysis and Prediction System) analyses as the WRF's initial and boundary data, and by using an initial field made by assimilating the radar data to the KLAPS analyses. For the sensitivity experiment, we selected a heavy rainfall case of 21 September 2010, where there was localized torrential rain, which was recorded as 259.5 mm precipitation in a day at Seoul. The result of the simulation using the FNL as initial and boundary data (FNL exp) showed that the localized heavy rainfall area was not accurately simulated and that the simulated amount of precipitation was about 4% of the observed accumulated precipitation. That of the simulation using KLAPS analyses as initial and boundary data (KLAPC exp) showed that the localized heavy rainfall area was simulated on the northern area of Seoul-Gyeonggi area, which renders rather difference in location, and that the simulated amount was underestimated as about 6.4% of the precipitation. Finally, that of the simulation using an initial field made by assimilating the radar data to the KLAPS using 3DVAR system (KLAP3D exp) showed that the localized heavy rainfall area was located properly on Seoul-Gyeonggi area, but still the amount itself was underestimated as about 29% of the precipitation. Even though KLAP3D exp still showed an underestimation in the precipitation, it showed the best result among them. Even if it is difficult to generalize the effect of data assimilation by one case, this study showed that the radar data assimilation can somewhat improve the accuracy of the simulated precipitation.

유역 토양 수분량을 고려한 초기손실 추정 (Estimation of initial abstraction to calculate effective rainfall by considering soil moisture content in watershed)

  • 이정선;이동현;김태철
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.245-248
    • /
    • 2002
  • The Soil Conservation Service (SCS) developed a unique procedure for estimating direct runoff from storm rainfall. But, It is very difficult to estimate accurately flood hydrograph by SCS method, because the initial ion of Ia(0.2Sa) itself has lots of systematic errors and there is no investigation on Ia in the Korean watershed. The maximum storage capacity of Umax is calibrated in the DAWAST model and is related to the present ability of rainfall to be infiltrated into the unsaturated soil. Effective rainfall for design and real-time flood hydrograph can be estimate more reasonably by introducing new Ia relationship made from the rainfall-runoff data observed in the Korean watersheds.

  • PDF

선행강우의 영향에 따른 불포화토의 침투특성 분석 (Effect of Antecedent Rainfall on Infiltration Characteristics in Unsaturated Soil)

  • 윤귀남;신호성;김윤태
    • 한국지반공학회논문집
    • /
    • 제31권8호
    • /
    • pp.5-15
    • /
    • 2015
  • 불포화 지반에서 선행강우에 의한 강우침투특성을 분석하기 위하여 국내 편마암 풍화토에 대한 일차원 실내강우 침투실험을 수행하였다. 춘천 및 충주지역 시료에 대한 실내모형실험에서 불포화토의 음의 간극수압은 강우 재하시 급격히 감소하고, 강우 종료후 점차 회복되었다. 강우강도가 증가함에 따라 침투속도가 증가하였으며, 선행강우시보다 본강우에서 침투속도가 빠른 것으로 나타났다. 이는 선행강우에 의하여 증가된 지반의 높은 포화도가 본강우시 강우침투속도를 증가시킨 것으로 사료된다. 특히 점토함유량이 많은 충주시료에서 음의 간극수압의 회복 속도와 침투속도가 느리게 나타났다. 유한요소 사면안정에 대한 수치해석 결과는 강우 침투에 의한 음의 간극수압의 감소에 따른 사면 안전율을 감소와 강우 종료후 간극수압의 확산에 의한 추가적인 사면 안정성 저감을 보여주고 있다. 사면의 안전율은 선행강우시 보다 본강우에서 더욱 감소하였다. 선행강우는 불포화지반의 초기 간극수압의 크기와 깊이별 패턴에 지대한 영향을 미치며, 이는 강우 사면의 안정성 해석에 고려해야 할 중요한 요소이다.

밭 토양에서의 유효강우량 산정을 위한 전산모델 개발에 관한 연구 (A Study on Development of Computer model for Evaluating the Effective Rainfall on Upland Soil)

  • 고덕구;정하우
    • 한국농공학회지
    • /
    • 제24권1호
    • /
    • pp.63-72
    • /
    • 1982
  • To maintain an optimum condition for the plant growth on upland soil, the irrigation planning after the natural rainfall should be given enormous considerations on the rainfall effectiveness. This study has been intended to develop the computer model for estimating the effec- tiveness of the rainfall. The computer model should also estimated the infiltration due to the rainfall and the soil moisture deficiency at the root zone of the plant. For this purpose, the experiments of infiltration using rainfall simulator and the observations of the change of soil moisture content before and after rainfall were carried out. Needed input data for the developed model include final infiltration capacity and field capacity of the soil, porosity of the top soil, root depth of the plant, rainfall intensity and duration, and the Horton's decay coefficient. Among the needed input data for the developed model, final infiltration capacity and Horton's decay coefficient were determined by the experiments of infiltration. And from the result of the experiments, it is found that there is a great correlation between initial infiltration capacity and initial moisture content. And it is also found that the infiltration due to rainfall can be estimated with the Horton's equation. The developed model was tested by the experimental data with two rainfall intensities. Tests were conducted on the different root depths at each rainfall. Observed and estimated effective rainfalls were found to have great correlation. The result of the experiments showed that the effectiveness of the rainfall were 100%, so the comparisons were conducted by the comsumption rates of infiltration at each depth. The developed model can be also used for estimating the deficiency of rainfall, if the rainfall is not sufficient to the needed soil moisture. But, test was not carried out.

  • PDF

강우특성이 우수수질에 미치는 영향 (Influence of Precipitation Characteristic on the Rainfall Water Quality)

  • 이창수
    • 한국환경과학회지
    • /
    • 제16권7호
    • /
    • pp.805-811
    • /
    • 2007
  • The purpose of this study was to invesitigate relationship between rainfall water quality and precipitation characteristic during the accumulated rainfall and rainless period. As the results of the analysis, rainfall water quality was improved in the rainfall duration. Correlation coefficients between rainwater quality and accumulated rainfall were $0.88{\sim}0.99$ except $Cl^-$. and that between rainless period and initial rainfall water quality were $0.62{\sim}0.75$. During the Asian dust event, concentration of the turbidity, BOD and electric conductivity were high. Therefore, it shows that the rainfall water quality is effected by atmospheric conditions before the rainfall events.