• Title/Summary/Keyword: Initial Rain

Search Result 97, Processing Time 0.024 seconds

Rainfall Rate Forecasting for Satellite Link Analysis (위성링크분석을 위한 강우강도예측)

  • Dung, Luong Ngoc Thuy;Sohn, Won
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.53-56
    • /
    • 2014
  • In the satellite system design, the design processes from the initial design to launch take about 5 years and the broadcasting satellite lifetime goes over 15 years. Furthermore, global warming phenomenon causes rainfall rate to increase more and more in some regions on the earth. Consequently, at the stage of the satellite link design, we need to consider the future rain attenuation over 20 years. In this paper, we investigated a time-series system model for forecasting to consider the future rainfall rate for the satellite broadcasting service. We found that rainfall rate of the future 20 years is increasing continuously.

Effective adsorption of lead and copper from aqueous solution by samaneasaman and banana stem

  • Harish, Narayana;Janardhan, Prashanth;Sangami, Sanjeev
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.225-237
    • /
    • 2018
  • The sorption of metal ions with low-cost adsorbents plays an important role in sustainable development. In the present study, the efficacy of sugarcane bagasse, rain tree fruits (samaneasaman), banana stem and their mixtures, used as bio-sorbents, in the removal of Cu(II) and Pb(II) ions from aqueous solution is evaluated. Batch studies are conducted, and residual ions were measured using Inductively Coupled Plasma (ICP)-atomic spectrometer. Effect of pH, initial metal ion concentration, reaction time and adsorbent dosage are studied. The Pb(II) removal efficiency was observed to be 97.88%, 98.60% and 91.74% for rain tree fruits, banana stem and a mixture of adsorbents respectively. The highest Cu(II) ion removal was observed for sugarcane bagasse sorbent with an efficiency of 82.10% with a pH of 4.5 and a reaction time of 90 min. Finally, desorption studies were carried out to study the leaching potential of adsorbent, and it was found that the adsorbent is stable in water than the other leaching agents such as HCl, ammonium acetate, Sodium EDTA. Hence, these adsorbents can be effectively used for the removal of these heavy metals.

Characteristics of Allochthonous Organic Matter in Large Dam Reservoir, Lake Soyang (소양호에서 외부기원유기물의 유입, 유출 특성)

  • Park, Hae-Kyung;Kwon, Oh-youn;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.88-97
    • /
    • 2011
  • To identify the inflow and outflow characteristics of allchthonous organic matters and examine the change of allochthonous organic matter load pattern due to the climate change, we investigated the temporal variations of DOC and POC concentrations within inflow water and dam discharge water and spatio-temporal distribution of POM within the lake water in Lake Soyang which is the largest dam reservoir in Korea in 2006. Most of allochthonous DOC flowed into the lake water during initial rain and was not affected by the amount of precipitation, whereas most of allochthonous POC flowed into during concentrated heavy rain and the concentration of POC was significantly associated with the amount of inflow water and precipitation. Calculated annual allochthonous organic matter loads in Lake Soyang from 2003 to 2006 using the regression equation between the amount of inflow water and the concentration of POC indicate allochthonous organic matter loads are mainly affected by total influx and extreme influx of inflow water. The spatio-temporal distribution of POM indicated allochthonous organic matter of inflow river during flood period in July transported from upper part to middle and lower part of the lake a month later respectively along the middle layer of water column in Lake Soyang.

Analysis of Non-Point Source Pollution Discharge Characteristics in Leisure Facilities Areas for Pattern Classification (패턴분류를 위한 위락시설지역의 비점오염원 유출특성분석)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Kim, Jung-Min
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1029-1038
    • /
    • 2010
  • In meteorology Korea has 2/3 of rain of annual total rainfall at the month of Jun through Sept and it has possibility to have serious flood damage because geographically it is composed of mountainous area with steep slope which account for 70% of its country. Also, the increase of impervious layer due to industrialization and urbanization causes direct runoff, which deteriorates contamination of rivers by moving the contaminated material on the surface at the beginning of rain. In particular, the area of leisure facilities needs the management of water quality absolutely because dense population requires space of park function and place to relax and increases moving capability of non-point pollution source. For disposition of rainfall & runoff, the standard of initial rainfall, which is to be used for the computation of disposition volume, is significant factors for the runoff study of non-point pollution source, Until now, a great deal of study has been done by many researchers. However, it is the current reality that the characteristics of runoff varies according to land protection comprising river basin and the standard of initial rainfall by each researcher is not clearly defined yet. Therefore, in this research, it is suggested that, with the introduction of SOM (Self-Organizing Map), the standard of initial rainfall be determined after analyzing each sectional data by executing pattern classification about runoff and water quality data measured at the test river basin for this research.

Sensitivities of WRF Simulations to the Resolution of Analysis Data and to Application of 3DVAR: A Case Study (분석자료의 분해능과 3DVAR 적용에 따른 WRF모의 민감도: 사례 연구)

  • Choi, Won;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.387-400
    • /
    • 2012
  • This study aims at examining the sensitivity of numerical simulations to the resolution of initial and boundary data, and to an application of WRF (Weather Research and Forecasting) 3DVAR (Three Dimension Variational data Assimilation). To do this, we ran the WRF model by using GDAS (Global Data Assimilation System) FNL (Final analyses) and the KLAPS (Korea Local Analysis and Prediction System) analyses as the WRF's initial and boundary data, and by using an initial field made by assimilating the radar data to the KLAPS analyses. For the sensitivity experiment, we selected a heavy rainfall case of 21 September 2010, where there was localized torrential rain, which was recorded as 259.5 mm precipitation in a day at Seoul. The result of the simulation using the FNL as initial and boundary data (FNL exp) showed that the localized heavy rainfall area was not accurately simulated and that the simulated amount of precipitation was about 4% of the observed accumulated precipitation. That of the simulation using KLAPS analyses as initial and boundary data (KLAPC exp) showed that the localized heavy rainfall area was simulated on the northern area of Seoul-Gyeonggi area, which renders rather difference in location, and that the simulated amount was underestimated as about 6.4% of the precipitation. Finally, that of the simulation using an initial field made by assimilating the radar data to the KLAPS using 3DVAR system (KLAP3D exp) showed that the localized heavy rainfall area was located properly on Seoul-Gyeonggi area, but still the amount itself was underestimated as about 29% of the precipitation. Even though KLAP3D exp still showed an underestimation in the precipitation, it showed the best result among them. Even if it is difficult to generalize the effect of data assimilation by one case, this study showed that the radar data assimilation can somewhat improve the accuracy of the simulated precipitation.

Determination of Optimal Operation Water Level of Rain Water Pump Station using Optimization Technique (최적화 기법을 이용한 빗물펌프장 최적 운영수위 결정)

  • Sim, Kyu-Bum;Yoo, Do-Guen;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.337-342
    • /
    • 2018
  • A rain water pumping station is a structural countermeasure to inland flooding of domestic water generated in a urban watershed. In this study, the optimal operation water level of the pump with the minimum overflow was determined based on the opinions of the person in charge of the operation of the rain water pump station. A GA (Genetic Algorithm), which is an optimization technique, was used to estimate the optimal operation water level of the rain water pump station and was linked with SWMM (Ver.5.1) DLL, which is a rainfall-runoff model of an urban watershed. Considering the time required to maximize the efficiency of the pump, the optimal operating water level was estimated. As a result, the overall water level decreased at a lower operating water level than the existing water level. For most pumps, the lowest operating water level was selected for the operating range of each pump unit. The operation of the initial pump could reduce the amount of overflow, and there was no change in the overflow reduction, even after changing the operation condition of the pump. Internal water flooding reduction was calculated to be 1%~2%, and the overflow occurring in the downstream area was reduced. The operating point of the pump was judged to be an effective operation from a mechanical and practical point of view. A consideration of the operating conditions of the pump in future, will be helpful for improving the efficiency of the pump and to reducing inland flooding.

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

A Study on the Response Technique for Toxic Chemicals Release Accidents - Hydrogen Fluoride and Ammonia - (독성 화학물질 누출사고 대응 기술연구 - 불산 및 암모니아 누출을 중심으로 -)

  • Yoon, Young Sam;Cho, Mun Sik;Kim, Ki Joon;Park, Yeon Shin;Hwang, Dong Gun;Yoon, Jun heon;Choi, Kyung Hee
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • Since the unprecedented hydrogen fluoride leak accident in 2012, there has been growing demand for customized technical information for rapid response and chemical accident management agencies including the Ministry of Environment, the National Emergency Management Agency, and the National Police Agency need more information on chemicals and accident management. In this regard, this study aims to provide reliable technical data and guidelines to initial response agencies, similar to accident management technical reports of the US and Canada. In this study, we conducted a questionnaire survey and interviews on initial response agencies like fire stations, police stations, and local governments to identify new information items for appropriate initial response and improvements of current guidelines. We also collected and reviewed the Canada's TIPS, US EPA's hydrogen fluoride documents, domestic and foreign literature on applicability tests of control chemicals, and interview data, and then produced items to be listed in the technical guidelines. In addition, to establish database of on-site technical information, we carried out applicability tests for accident control data including ① emergency shut down devide, safety guard, shut down valve, ground connection, dyke, transfer pipe, scrubber, and sensor; ② literature and field survey on distribution type and transportation/storage characteristics (container identification, valve, ground connection, etc.); ③ classification and identification of storage/transportation facilities and emergency management methodslike leak prevention, chemicals control, and cutoff or bypass of rain drainage; ④ domestic/foreign analysis methods and environmental standards including portable detection methods, test standards, and exposure limits; and ⑤ comparison/evaluation of neutralization efficiency of control chemicals on toxic substances.

The Effect of Radar Data Assimilation in Numerical Models on Precipitation Forecasting (수치모델에서 레이더 자료동화가 강수 예측에 미치는 영향)

  • Ji-Won Lee;Ki-Hong Min
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.457-475
    • /
    • 2023
  • Accurately predicting localized heavy rainfall is challenging without high-resolution mesoscale cloud information in the numerical model's initial field, as precipitation intensity and amount vary significantly across regions. In the Korean Peninsula, the radar observation network covers the entire country, providing high-resolution data on hydrometeors which is suitable for data assimilation (DA). During the pre-processing stage, radar reflectivity is classified into hydrometeors (e.g., rain, snow, graupel) using the background temperature field. The mixing ratio of each hydrometeor is converted and inputted into a numerical model. Moreover, assimilating saturated water vapor mixing ratio and decomposing radar radial velocity into a three-dimensional wind vector improves the atmospheric dynamic field. This study presents radar DA experiments using a numerical prediction model to enhance the wind, water vapor, and hydrometeor mixing ratio information. The impact of radar DA on precipitation prediction is analyzed separately for each radar component. Assimilating radial velocity improves the dynamic field, while assimilating hydrometeor mixing ratio reduces the spin-up period in cloud microphysical processes, simulating initial precipitation growth. Assimilating water vapor mixing ratio further captures a moist atmospheric environment, maintaining continuous growth of hydrometeors, resulting in concentrated heavy rainfall. Overall, the radar DA experiment showed a 32.78% improvement in precipitation forecast accuracy compared to experiments without DA across four cases. Further research in related fields is necessary to improve predictions of mesoscale heavy rainfall in South Korea, mitigating its impact on human life and property.

Scavenging Properties of Atmospheric Carbon by Precipitation

  • Hwang, Kyung-Chul;Ma, Chang-Jin;Cho, Ki-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.77-85
    • /
    • 2004
  • In order to investigate the scavenging property of airborne carbonaceous particles by precipitations, rainwater, snow sample, and total suspended particulate matter (TSP) were collected at a heavily industrialized urban site. Elemental carbon (EC) contents of both rainwater and snow water were deter-mined using elemental analysis system. EC concentrations in rain samples varied from 33.6 to 166.6 $\mu\textrm{g}$ L$^{-1}$ with an average 47.2 $\mu\textrm{g}$ L$^{-1}$ . On the other hand, those of snow samples in three times snow events were ranged from 122.4 to 293.3 $\mu\textrm{g}$ L$^{-1}$ . As might be expected, EC showed the significantly high scavenging rate at the initial rainfall. The average total carbon (TC) scavenging rate by washout mechanisms was 57.6% for five rainfall events. The scavenging rate of EC gradually increased in proportion to the increasing rainfall intensity and rainfall amount.