• Title/Summary/Keyword: Initial Orbit

Search Result 128, Processing Time 0.023 seconds

Geostationary Satellite Station Keeping Robustness to Loss of Ground Control

  • Woo, Hyung Je;Buckwalter, Bjorn
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite's orbit in terms of the maximum duration the satellite's station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.

Satellite's orbit tracking with batch estimation

  • Kim, Jong-Ah;Kim, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.224-228
    • /
    • 1994
  • This paper deals with a Batch processor application to determine orbit trajectories from satellite tracking data. The purpose of this paper is to find the initial state vectors. In order to determine the better estimation process, several different cases are compared. Here we adapt a minimum variance concept to develop estimation and prediction techniques. These results are compared with by SEP, Spherical Error Probable, values.

  • PDF

ANALYSIS OF THE HAUSAT-2 ATTITUDE CONTROL (HAUSAT-2 자세제어 성능 해석)

  • Lee Byung-Hoon;Kim Soo-Jung;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.133-137
    • /
    • 2005
  • This paper describes the design and performance verification of a pitch momentum bias control system being built by students at the Space System Research Laboratory(SSRL). HAUSAT-2 ADCS(Attitude Determination and Control of Subsystem) op-elation mode is divided into two parts, initial mode and on-orbit mode. This paper describes design of the HAUSAT-2 performance of attitude control results using pitch momentum bias control method in initial mode and on-orbit mode and momentum dumping method.

  • PDF

Mission Operation Capability Verification Test for Low Earth Orbit(LEO) Satellite by Utilizing Interface Environment between LEO Satellite and Ground Station (저궤도 위성과 지상국간 접속 환경을 활용한 임무수행능력 지상 검증 시험)

  • Lee, Sang-Rok;Koo, In-Hoi;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • After launch of Low Earth Orbit(LEO) satellite, Initial Activation Checkout(IAC) and Calibration and Validation(Cal & Val) procedure are performed prior to enter normal operation phase. During normal operation phase, most of the time is allocated for mission operation except following up measures to anomaly and orbit maintenance. Since mission operation capability is key indicator for success of LEO satellite program and consistent with promotion purpose of LEO satellite program, reliability should be ensured by conducting through test. In order to ensure reliability by examining the role of LEO satellite and ground station during ground test phase, realistic test scenario that is similar to actual operation conditions should be created, and test that aims to verify full mission cycle should be performed by transmitting created command and receiving image and telemetry data. This paper describes the test design and result. Consideration items for test design are described in detail and result of designed test items are summarized.

Design of Interplanetary Orbit by Lambert Solution (람베르트 해를 이용한 행성 간 궤도 설계)

  • Kim, Dong-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.72-78
    • /
    • 2024
  • It is essential to coincide with moving target planet at future arrival changing point during space flight time in an interplanetary orbit design. Transition orbit elements can be obtained from traditional Lambert solutions by adjusting initial and final positions include flight time. Two-point boundary values of orbits can be selected in the design process. From this point of view, interplanetary orbits are infinite if they can be acquired from departure velocity without limit. However, appropriate and optimized procedures are needed to obtain an optimum interplanetary orbit to meet given conditions. The departure velocity is highly dependent on space launch vehicle's ability up to now. In this paper, algorithms of professor Howard Curtis at Embry-Riddle Aeronautical University were applied to obtain Lambert solution and orbit elements.

Spacecraft Formation Reconfiguration using Impulsive Control Input

  • Bae, Jonghee;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.183-192
    • /
    • 2013
  • This paper presents formation reconfiguration using impulsive control input for spacecraft formation flying. Spacecraft in a formation should change the formation size and/or geometry according to the mission requirements and space environment. To modify the formation radius and geometry with respect to the leader spacecraft, the follower spacecraft generates additional control inputs; the two impulsive control inputs are general control type of the spacecraft system. For the impulsive control input, Lambert's problem is modified to construct the transfer orbit in relative motion, given two position vectors at the initial and final time. Moreover, the numerical simulation results show the transfer trajectories to resize the formation radius in the radial/along-track plane formation and in the along-track/cross-track plane formation. In addition, the maneuver characteristics are described by comparing the differential orbital elements between the reference orbit and transfer orbit in the radial/along-track plane formation and along-track/cross-track plane formation.

An Analytical Method for Low-Thrust and High-Thrust Orbital Transfers

  • Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.47-47
    • /
    • 2003
  • Analytical formulae are presented to approximate the evolution of the semi major axis, the maneuver time, and the final mass fraction for low thrust orbital transfers with circular initial orbit, circular target orbit, and constant thrust directed either always along or always opposite the velocity vector. For comparison, the associated results for high-thrust transfers, i.e. the two-impulse Hohmann transfer, are summarized. All results are implemented in a computer code designed to analyze planar planetary and interplanetary space missions. This implementation yields fast and reasonably accurate approximations to trajectory performance boundaries. Consequently, the approach can provide trajectory analysis for each spacecraft configuration during the conceptual space mission design phase. As an example, a mission from Low-Earth Orbit (LEO) to Jupiter's moon Europa is analyzed.

  • PDF

The Comparison of Numerical Integration Methods for the KASIOPEA, Part II

  • Jo, Jung-Hyun
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.4-27
    • /
    • 2008
  • The completion ('initiation' de facto) of the KASI Orbit Propagator and Estimator (KASIOPEA) has been delayed for several reasons unfortunately. Due to the lack of working staffs and the Division priority rearrangement, the initial plan was dismantled and ignored for many years. However, fundamental researches regarding the essential parts of KASIOPEA has been done by author. The numerical integration module of the KASIOPEA is the most sensitive part in the precision of the final output in general. There is no silver bullet in the numerical integration in an orbit propagation as a non-stiff ODE case. Many numerical integration method like single-step methods, multi-step method, and extrapolation methods have been used in overly populated orbit propagator or estimator. In this study, several popular methods from single-step, multi-step, and extrapolation methods have been tested in numerical accuracy and stability.

  • PDF

A Study of the Disposal Maneuver Planning for LEO Satellite (저궤도 위성의 폐기기동 계획 연구)

  • Seong, Jae-Dong;Kim, Hae-Dong;Choi, Ha-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.352-362
    • /
    • 2016
  • In this paper, a disposal maneuver which complies the space debris mitigation guideline was analysed for KOMPSAT-2 as an example of LEO satellite. Definition of disposal altitude which comply the '25 year rule', re-entry survivability analysis of KOMPSAT-2 parts inside and casualty area analysis were performed using STK and ESA's DRAMA. Finally, assuming that there were several survival objects during uncontrolled re-entry stage, the re-entry initial orbit elements which show the low casualty probability were found even if there were various uncertainties about the initial orbit. As a result, KOMPSAT-2 should be descended its altitude at least 43km or up to 105km to comply '25 year rule' and there were heavy or heat resistant survival objects which generated $4.3141m^2$ casualty area. And if RAAN of re-entry initial orbit was 129 degree, total casualty probability was lower than standard value of space debris mitigation guideline even if there were uncertainties about the initial orbit.

Initial On-Orbit Modulation Transfer Function Performance Analysis for Geostationary Ocean Color Imager

  • Oh, Eun-Song;Kim, Sug-Whan;Cho, Seong-Ick;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.199-208
    • /
    • 2012
  • The world's first geostationary ocean color imager (GOCI) is a three-mirror anastigmat optical system 140 mm in diameter. Designed for 500 m ground sampling distance, this paper deals with on-orbit modulation transfer function (MTF)measurement and analysis for GOCI. First, the knife-edge and point source methods were applied to the 8th band (865 nm) image measured April 5th, 2011. The target details used are the coastlines of the Korean peninsula and of Japan, and an island 400 meters in diameter. The resulting MTFs are 0.35 and 0.34 for the Korean East Coastline and Japanese West Coastline edge targets, respectively, and 0.38 for the island target. The daily and seasonal MTF variations at the Nyquist frequency were also checked, and the result is $0.32{\pm}0.04$ on average. From these results, we confirm that the GOCI on-orbit MTF performance satisfies the design requirements of 0.32 for 865 nm wavelength.