• Title/Summary/Keyword: Initial Estimation

Search Result 1,044, Processing Time 0.068 seconds

Estimation of Efficient Use of Volume and Facility Volume Distribution of Artificial Reefs deployed in the Busan Sea Region (부산연안의 인공어초 시설 현황과 유효공용적 평가)

  • Kim, Ho-Sang;Lee, Jeong-Woo;Won, Seung-Hwan;Kim, Jong-Ryeol;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.255-263
    • /
    • 2009
  • This study assessed the facility volume distribution for artificial reefs (ARs) deployed at the sea bottom in fishing grounds in the Busan Sea region, and estimated the efficient use of volume in the initial AR group. Analysis of the volume of AR facilities in the Busan Sea region indicated that the quantity and surface areas of deployed facilities varied greatly between 1997 and 2004. However, a rapid decrease in AR facility volume after 2003 indicated an increased use of different kinds of ARs, such as steel or ceramic ARs. And the results revealed that a total of 2,777 AR facilities were deployed in the Gijang sea region with a founding ratio of 89%; corresponding numbers for the Heaundae and Namgu sea region were 7,691 and 84.9%, and 905 and 96% for the cubic type of AR in the Saha and Gangseo sea regions. The analysis indicated that ARs deployed in the Busan sea region maintained a good conservation ratio of more than 85%. The loss in AR volume (approximately 15%) was due to subsidence, breakaway, and incomplete deployment.

  • PDF

Estimation of Coefficient of Earth Pressure At Rest During SCP Installation by Drained Triaxial Compression Test (배수삼축압축시험을 통한 SCP 시공과정 중 정지토압계수 평가)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.93-101
    • /
    • 2012
  • SCP is a construction method that maximizes the effects of ground improvement by creating sand piles, which are formed by the compaction within soft ground. SCP is mainly used for consolidation and drain effects in clayey soils, and as a liquefaction countermeasure through effects such as compaction in loose sandy soils. In the design of SCP, if the sand piles with high stiffness are not taken into account, it can become a design that overly considered safety, and increased construction costs are highly likely to cause economic disadvantages. The changes in stress conditions and compaction mechanisms in the subsurface have been identified to a certain extent by study findings to date. However, the studies that considered SCP and in-situ ground as composite ground are fairly limited, and therefore, those studies have not achieved enough results to fully explain the relevant topics. In this study, the ground improved by SCP was regarded as the composite ground that consists of SCP and in-situ ground. Moreover, employing a CID test, this study examined the changes in the stress conditions of in-situ ground according to the installation of SCP through the relations between $K_0$ and SCP replacement ratio. At the same, whether the SCP installation procedure can be recreated in a laboratory was examined using a cyclic triaxial test. According to the test results, the changes in the stress conditions of the original ground occurred most largely in an initial stage of SCP installation, and after a certain time point, the vibration for SCP installation did not have a great influence on the changes in the stress conditions of the ground. Moreover, in order to recreate the behaviors of in-suit ground according to SCP in a laboratory, cyclic loading, which corresponds to casing vibration, was concluded to be essentially required.

Development of the Dynamic Model for the Metabolic Network of Clostridium acetobutylicum (Clostridium acetobutylicum의 대사망의 동적모델 개발)

  • Kim, Woohyun;Eom, Moon-Ho;Lee, Sang-Hyun;Choi, Jin-Dal-Rae;Park, Sunwon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.226-232
    • /
    • 2013
  • To produce biobutanol, fermentation processes using clostridia that mainly produce acetone, butanol and ethanol are used. In this work, a dynamic model describing the metabolic reactions in an acetone-butanol-ethanol (ABE)-producing clostridium, Clostridium acetobutylicum ATCC824, was proposed. To estimate the 58 kinetic parameters of the metabolic network model with experimental data obtained from a batch fermentor, we used an efficient optimization method combining a genetic algorithm and the Levenberg-Marquardt method because of the complexity of the metabolism of the clostridium. For the verification of the determined parameters, the developed metabolic model was evaluated by experiments where genetically modified clostridium was used and the initial concentration of glucose was changed. Consequently, we found that the developed kinetic model for the metabolic network was considered to describe the dynamic metabolic state of the clostridium sufficiently. Thus, this dynamic model for the metabolic reactions will contribute to designing the clostridium as well as the fermentor for higher productivity.

Des-Gamma-Carboxyprothrombin for Early Identification and Prognosis of Hepatocellular Carcinoma - A Case Control Study from Western Nepal

  • Mittal, Ankush;Gupta, Satrudhan Pd;Sathian, Brijesh;Sreedharan, Jayadevan;Poudel, Bibek;Yadav, Shambhu Kumar;Pandeya, Dipendra Raj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5773-5775
    • /
    • 2012
  • Objective: To assess the diagnostic and prognostic value of AFP and des-gamma-carboxyprothrombin (DCP) in combination and alone for hepatocellular carcinoma. Materials and Methods: A case control study carried out in the Department of Biochemistry of Manipal College of Medical Sciences, Pokhara, Nepal between $1^{st}$ January 2010 and $31^{st}$ December 2011. The variables collected were age, gender, BMI, total proteins, albumin, AST, ALT, total bilirubin, DCP, AFP. Approval for the study was obtained from the institutional research ethical committee. Estimation of AFP was performed by ELISA reader for all cases. Analysis was done using descriptive statistics and confidence interval (CI). The data was analyzed using Excel 2003, R 2.8.0 Statistical Package for the Social Sciences (SPSS) for Windows Version 16.0 (SPSS Inc; Chicago, IL, USA) and the EPI Info 3.5.1 Windows Version. Results:The mean age of HCC cases was $53.6{\pm}14.93$ yrs. The percentage of females was less than males in both cases (23%) and controls (29%). The specificity of DCP reached 100% when its values was equal or greater than 150 (MAU/ml) for 0, 3, 6, 9, 12 months preceding the diagnosis of HCC. Similarly, the specificity for AFP was also nearly 100% when its value was equal or greater than 200 ng/ml 0, 3, 6, 9, 12 months earlier to the finding of HCC. The specificity of DCP (${\geq}40MAU/mL$) and AFP(${\geq}20$ ng/mL) in combination was 93%, 97%, 95%, 96%, 97% in respect to 0, 3, 6, 9, 12 months prior to the diagnosis of HCC. Conclusion: The combination of both DCP and AFP will improve the finding of initial HCC and the sensitivity of these markers was utmost at the time of HCC identification and noticeably lesser at former time points.

Convergence Analysis of the Least Mean Fourth Adaptive Algorithm (최소평균사승 적응알고리즘의 수렴특성 분석)

  • Cho, Sung-Ho;Kim, Hyung-Jung;Lee, Jong-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.56-64
    • /
    • 1995
  • The least mean fourth (LMF) adaptive algorithm is a stochastic gradient method that minimizes the error in the mean fourth sense. Despite its potential advantages, the algorithm is much less popular than the conventional least mean square (LMS) algorithm in practice. This seems partly because the analysis of the LMF algorithm is much more difficult than that of the LMS algorithm, and thus not much still has been known about the algorithm. In this paper, we explore the statistical convergence behavior of the LMF algorithm when the input to the adaptive filter is zero-mean, wide-sense stationary, and Gaussian. Under a system idenrification mode, a set of nonlinear evolution equations that characterizes the mean and mean-squared behavior of the algorithm is derived. A condition for the conbergence is then found, and it turns out that the conbergence of the LMF algorithm strongly depends on the choice of initial conditions. Performances of the LMF algorithm are compared with those of the LMS algorithm. It is observed that the mean convergence of the LMF algorithm is much faster than that of the LMS algorithm when the two algorithms are designed to achieve the same steady-state mean-squared estimation error.

  • PDF

Forecasting the Precipitation of the Next Day Using Deep Learning (딥러닝 기법을 이용한 내일강수 예측)

  • Ha, Ji-Hun;Lee, Yong Hee;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • For accurate precipitation forecasts the choice of weather factors and prediction method is very important. Recently, machine learning has been widely used for forecasting precipitation, and artificial neural network, one of machine learning techniques, showed good performance. In this paper, we suggest a new method for forecasting precipitation using DBN, one of deep learning techniques. DBN has an advantage that initial weights are set by unsupervised learning, so this compensates for the defects of artificial neural networks. We used past precipitation, temperature, and the parameters of the sun and moon's motion as features for forecasting precipitation. The dataset consists of observation data which had been measured for 40 years from AWS in Seoul. Experiments were based on 8-fold cross validation. As a result of estimation, we got probabilities of test dataset, so threshold was used for the decision of precipitation. CSI and Bias were used for indicating the precision of precipitation. Our experimental results showed that DBN performed better than MLP.

Estimation of the net energy requirement for maintenance in broilers

  • Liu, Wei;Lin, Chang Hua;Wu, Zheng Ke;Liu, Guo Hua;Yan, Hai Jie;Yang, Hua Ming;Cai, Hui Yi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.849-856
    • /
    • 2017
  • Objective: The net energy requirement for the maintenance ($NE_m$) of broilers was determined using regression models by the indirect calorimetry method (ICM) or the comparative slaughter method (CSM). Methods: A $2{\times}4$ factorial arrangement of treatments including the evaluation method (ICM or CSM) and feed intake (25%, 50%, 75%, or 100% of ad libitum recommended) was employed in this experiment. In the ICM, 96 male Arbor Acres (AA) birds aged d 15 were used with 4 birds per replicate and 6 replicates in each treatment. In the CSM, 116 male AA birds aged d 15 were used. Among these 116 birds, 20 were selected as for initial data and 96 were assigned to 4 treatments with 6 replicate cages and 4 birds each. The linear regression between retained energy (RE) and metabolizable energy intake (MEI) or the logarithmic regression between heat production (HP) and MEI were used to calculate the metabolizable or net energy requirement for maintenance ($ME_m$) or $NE_m$, respectively. Results: The evaluation method did not detect any differences in the metabolizable energy (ME), net energy (NE), and NE:ME of diet, and in the MEI, HP, and RE of broilers. The MEI, HP, and RE of broilers decreased (p<0.01) as the feed intake decreased. No evaluation method${\times}$feed intake interaction was observed on these parameters. The $ME_m$ and $NE_m$ estimated from the linear relationship were 594 and 386 kJ/kg of body weight $(BW)^{0.75}/d$ in the ICM, and 618 and 404 kJ/kg of $BW^{0.75}/d$ in the CSM, respectively. The $ME_m$ and $NE_m$ estimated by logarithmic regression were 607 and 448 kJ/kg of $BW^{0.75}/d$ in the ICM, and were 619 and 462 kJ/kg of $BW^{0.75}/d$ in the CSM, respectively. Conclusion: The NEm values obtained in this study provide references for estimating the NE values of broiler diets.

Assessment of Compressive Strength of Granitic Gneiss Using Nondestructive Testing based on Sound Energy (사운드에너지 기반 화강편마암의 비파괴 압축강도 산정)

  • Son, Moorak;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.8
    • /
    • pp.5-10
    • /
    • 2018
  • This study provides a method to assess the compressive strength of granitic gneiss using total sound signal energy, which is calculated from the signal of sound pressure measured when an object impacts on rock surface, and its results. For this purpose, many test specimens of granitic gneiss were prepared. Each specimen was impacted using a devised device (impacting a specimen by an initial rotating free falling and following repetitive rebound actions) and all sound pressures were measured as a signal over time. The sound signal was accumulated over time (called total sound signal energy) for each specimen of granitic gneiss and it was compared with the directly measured compressive strength of the specimen. The comparison showed that the total sound signal energy was directly proportional to the measured compressive strength, and with this result the compressive strength of granitic gneiss can be reliably assessed by an estimation equation of total sound signal energy. Furthermore, from the study results it is clearly believed that the compressive strength of other rocks and concrete can be assessed nondestructively using the total sound signal energy.

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

The Comparative Quantitative Risk Assessment of LNG Tank Designs for the Safety Improvement of Above Ground Membrane Tank (지상식 멤브레인 LNG저장탱크 안전성 향상을 위한 설계형식별 정량적 위험성 비교 평가)

  • Lee S.R.;Kwon B.G.;Lee S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.57-61
    • /
    • 2005
  • The objective of paper is to carry out a comparative Quantitative Risk Assessment (QRA) of two KOGAS tank designs using a fault tree methodology, a standard 'Full Containment' tank and a 'Membrane' tank. For the membrane tank, both the initial KOGAS design and 4 modified KOGAS designs have been assessed, giving six separate cases. In this paper, the frequencies of releases are quantified using a fault tree approach. For clarity in the analysis, and to ensure consistency, all cases have been quantified using the same fault tree. Logic within the fault tree is used to select each of the cases. Full quantification of risks is often difficult, owing to a lack of relevant failure data, but the aim of this study has been to be as quantitative as possible, with full transparency of failure information. The most significant general cause of external LNG leaks is predicted to be a seismic event, which has been quantified nominally. 4modified KOGAS desiens to Prevent damage of bottom membrane panels that was shown in preparatory estimation could quantitively confirm safety improvement. According to result, the predicted frequencies of an external LNG leak for the full containment and modified membrane tanks are very similar, failures due to dropped pumps are predicted to be significantly greater for the membrane tank with thickened plate than for the full containment tank.

  • PDF