• Title/Summary/Keyword: Initial Displacement

Search Result 624, Processing Time 0.027 seconds

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

TREATMENT EFFECTS OF $F{\ddot{R}}ANKEL$ FUNCTIONAL REGULATOR III IN MIXED DENTITION CHILDREN WITH ANTERIOR CROSSBITE (혼합치열기 전치부 반대교합 아동에서 $F{\ddot{r}}ankel$ functional regulator III의 치료효과)

  • Park, Jeung-Ah;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.4
    • /
    • pp.652-661
    • /
    • 2008
  • The purpose of this study was to evaluate the skeletal and dental effects obtained by the Frankel functional regulator III in growing children with Class III malocclusions. Cephalometric changes in thirty children at the time of mixed dentition malocclusions (initial mean age, $7.9{\pm}1.1$ years; mean treatment duration, $1.5{\pm}0.8$ years) were analysed. The results were as follows : 1. The skeletal effects on the maxilla showed a significant downward displacement whereas forward displacement was not significant in comparison with the control group. 2. The skeletal effects on the mandible showed statistically significant backward and downward displacement. 3. The dental effects showed statistically significant backward movement in the mandibular incisor tip and increase of overjet The results suggested that forward displacement on the maxilla was insufficient and treatment effects were caused mainly by downward displacement of the maxilla, backward and downward rotation of the mandible, and the increase of overjet during short period.

  • PDF

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(I) (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구 (I) -기하학적 형상에 따른 동적 특성-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.113-121
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form. Therefore, the stress analysis of thin shell has been one of the more challenging areas of structural mechanics. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical Shell. For these purpose, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic dynamic response. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows: 1. The dynamic characteristics with a/H, 1) As the a/H increases, the amplitude of displacement increased. 2) The values of displacement Dynamic Magnification Factor (DMF) range from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell range from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point of shell is increased gradually. 4) The values of DMF of hoop-stresses range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell range from 2.3 to 2.6, the values of DMF of stress were larger than that of displacement. 2. The dynamic characteristics with t/R, 1) With the decrease of thickness of shell decreses, the amplitude of the displacement and the period increased. 2) The values of DMF of the displacement were range from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were range from 2.1 to 2.2.

  • PDF

The Stability and Characteristic Analysis of Cut Slope Behavior using Real-time Monitoring System (상시 계측시스템을 이용한 붕괴 절토사면 거동 특성 분석 및 안정성 해석)

  • Baek, Yong;Koo, Ho-Bon;Jang, Ki-Tae;Yoo, Byung-Sun;Bae, Gyu-Jin
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2004
  • The failure of cut slopes frequently occurs particularly during the thawing season and the rain season in summer. This study interpreted data collected from site to which a real-monitoring system was applied in order to analyze the causes of ground behaviors and to forecast future slope failure. As for research methods, this study analyzed the size and mechanism of failure by integrating the results of field surveys and measurements. Furthermore, it analyzed data transmitted by the monitoring system installed in the a result, three times of ground displacement occurred as well as a number of partial tension cracks. The cut slope composed of sandstone and siltstone started its initial behavior as a result of torrential downpour and the loss of support of the substructure. For quantitative analysis of the characteristics of ground behavior, this study measured 5 lateral lines. According to the result of the measurement, displacement happened little in the section to which countermeasure had been applied, but displacement of maximum 400mm happened in the section to which countermeasure had not bee applied. The analysis of data on displacement and rainfall suggested a close relationship between ground behavior and rainfall. According to the result of stability interpretation along with the change of ground saturation, stability rate appeared to be less than 1.0 when ground saturation is over 55%. Although the current trend of ground behavior is at a stable stage falling within the range of tolerance, it is considered necessary to continue monitoring and data analysis because ground displacement is highly possible with the change of temperature during the winter.

The Effect of Stress on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박용 열교환기 세관의 SCC에 미치는 응력의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.22-32
    • /
    • 2003
  • Al-brass material is generally used at the state of plastic deformation, for example; bending, extension of bell mouth at shell and tube type heat exchanger. And SCC(stress corrosion cracking) of Al-brass material will be affected by residual stress as plastic deformation. SCC results from synergism between mechanical factor and corrosion environment. Mechanical factor is stress that directly relates with stress intensity factor at the crack tip. This paper was studied on the effect of stress on SCC of Al-brass tube under in $3.5\%$ NaCl. + $0.1\%\;NH_4OH$ solution by constant displacement tester. Increasing of acidified water flow into sea and speeds up corrosion rate of Al-brass which is used as a tube material of vessel heat exchanger by polluted coast seawater. The experimental results are as follow The latent time of SCC occurrence gets longer as the initial stress intensity factor($K_{Ii}$) gets lower The main crack was propagated as the initial stress intensity factor($K_{Ii}$) gets higher, and secondary cracks occurred by electro-chemical factor a(ter stage of released stress. Dezincification phase showed around the crack, and the range of dezincification gets wider as the initial stress intensity factor($K_{Ii}$) gets higher.

  • PDF

Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening

  • Ghannadpour, S. Amir M.;Kiani, Payam
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.557-568
    • /
    • 2018
  • An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

Optical Flow Estimation of Large Displacements from Real Sequential Images

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 2011
  • In computing the optical flow. Horn and Schunck's method which is a representative algorithm is based on differentiation. But it is difficult to estimate the velocity for a large displacement by this algorithm. To cope with this problem multigrid method has been proposed. In this paper, we have proposed a scaled multigrid algorithm which the initial flow for a level is calculated by the summation of the optimally scaled flow and error flow. The optimally scaled flow is the scaled expanded flow of the previous level, which can generate an estimated second image having the least RMS error with respect to the original second image, and the error flow is the flow between the estimated second image (generated by the optimally scaled flow) and the original second image. The flow for this level is then estimated using the original first and second images and the initial flow for that level. From among the various coarsest starting levels of the multigrid algorithm, we select the one that finally gives the best estimated flow. Better results were achieved using our proposed method compared with Horn and Schunck's method and a conventional multigrid algorithm.

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.

Experimental Study for Optimizing the Acceleration of AC Servomotor Using Finite Jerk

  • Chung, Won-Jee;Kim, Sung-Hyun;Hwan, Park-Myung;Su, Shin-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.604-609
    • /
    • 2005
  • This paper presents an experimental study for optimizing the acceleration of AC servomotor using finite jerk (the first derivative of acceleration). The acceleration optimization with finite jerk aims at generating the smooth velocity profile of AC servomotor by experimentally minimizing vibration resulted from the initial friction of servomotor. The stick-slip motion of AC servomotor induced by initial friction can result in the positional errors that are not good for high-precision devices such as the assembly robot arms to be used in a 300mm wafer or a LCD (Liquid Crystal Display) stocker system. In this paper, experiments were made by using a PM (Permanent Magnet) type AC servomotor with MMC(R) (Multi Motion Controller) programmed in Visual C++(R). The experiments have been performed for finding the optimal duration time of finite jerk in terms of the minimization of vibration displacements when both the magnitude of velocity and the allowable acceleration are given. We have compared the proposed control with the conventional control with trapezoidal velocity profile by measuring vibration displacements. The effectiveness of the proposed control has been verified in that the experimental results showed the decrease of vibration displacement by about 24%.

  • PDF

Creative Design of the Wedge Type Rail Clamp to set the Initial Clamping Force (초기압착력 설정을 위한 쐐기형 레일클램프의 창의적 설계)

  • Han, Dong-Seop;Kim, Yong;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-64
    • /
    • 2007
  • The clamping force of a jaw pad is determined by the displacements of main part when two lockers are locked, after the clamping angle of a locker was set up in the wedge type rail clamp for a container crane. In this time, if the resistance of wedge frame generates due to several factors, the clamping angle of a locker to display the initial clamping force will be changed because of the reduction of displacement of extension bar. This resistance is determined by the eccentric distance between the roller and the wedge, and by the gap between the wedge frame and outer frame. In this study we measured the tensile force of both extension bar through the performance test of the prototype rail clamp in order to evaluate the effect of the resistance of wedge frame on the clamping force of the wedge type rail clamp.

  • PDF