• Title/Summary/Keyword: Initial Deflection

Search Result 252, Processing Time 0.022 seconds

Spline function solution for the ultimate strength of member structures

  • Zhang, Qi-Lin;Shen, Zu-Yan
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.185-196
    • /
    • 1994
  • In this paper a spline function solution for the ultimate strength of steel members and member structures is derived based on total Lagrangian formulation. The displacements of members along longitudinal and transverse directions are interpolated by one-order B spline functions and three-order hybrid spline functions respectively. Equilibrium equations are established according to the principle of virtual work. All initial imperfections of members and effects of loading, unloading and reloading of material are taken into account. The influence of the instability of members on structural behavior can be included in analyses. Numerical examples show that the method of this paper can satisfactorily analyze the elasto-plastic large deflection problems of planar steel member and member structures.

Thermomechanical postbuckling of imperfect moderately thick plates on two-parameter elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.149-162
    • /
    • 1996
  • A postbuckling analysis is presented for a simply supported, moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading and resting on a two-parameter elastic foundation. The two cases of thermal postbuckling of initially compressed plates and of compressive postbuckling of initially heated plates are considered. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including the plate-foundation interaction and thermal effect. The analysis uses a deflection-type perturbation technique to determine the buckling loads and postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, moderately thick plates resting on Winkler or Pasternak-type elastic foundations. Typical results are presented in dimensionless graphical form.

Flexural Behavior of I-Section Prestressed Dual Concrete Beam Using High Performance Steel Fiber Reinforced Concrete (고성능 강섬유보강 콘크리트가 적용된 I-단면 프리스트레스트 이중 콘크리트 보의 휨 거동)

  • Park, Tae-Hyo;Yun, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.162-165
    • /
    • 2006
  • I-section prestressed concrete(I-PC) beam crack due to low tensile strength, may decrease rigidity and structural performance by excessive deflection. In an effort to this problem, in this research, I-section prestressed dual concrete(I-PDC) beam has been proposed, consisting of normal strength concrete in compression zone, and high performance steel fiber reinforced concrete(HPSFRC) with a bottom flange depth in tensile zone. Crack formation and its propagation are controlled by the HPSFRC in I-PDC beam. The initial cracking and service limit loads are increased along with the load carrying capacity and flexural stiffness.

  • PDF

Detailed Structural Analysis of Joint Part between Composite Carbody and Metal Underframe (복합재 차체와 금속 언더프레임 접합부의 상세구조해석)

  • Kang Sang-Guk;Kim Soo-Hyun;Lee Sang-Eui;Kim Chun-Gon;Shin Kwang-Bok;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.193-197
    • /
    • 2004
  • In development of a composite carbody tilting train, the structural safety is especially emphasized on the joint part between composite carbody and metal underfame because it is directly related to the safety of passengers. In this paper, detailed structural analysis including bending and compression was performed for the proposed designs of the joint part, so stress distribution and maximum deflection were obtained and compared to each other. Based on the results of initial designs, modified ones were suggested and the same analysis procedure as before was followed, through which we could confirm the excellence of new design.

  • PDF

Stamping Analyses of Laser Welded Door Inner and Die Design (레이저 용접 도어 인너의 성형해석과 금형설계)

  • 김헌영;신용승;김관희;조원석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.65-71
    • /
    • 1997
  • Computer simulations and test trials are carried out to get the optimal conditions about the stamping die design of the tailor laser welded automotive door inner. Firstly, the stamping process including gravity deflection, bead calibration, binder wrap, forming and spring back, are analyzed by the computer simulation. The results of simulation shows good correspondance with those of test trial under the same conditions. The variables of parametric study which will be investigated in the simulation and test trials, are determined form the results of the first run. The formability under the various conditions is evaluated, which are the initial postion of blank, blank holding force, corner radius and the shape of drawbead. Finally, well controled sound product without fracture, wrinkling and excessive weldline movement is obtained.

  • PDF

Crest Settlement Prediction of Concrete Faced Rock-Fill Dam After Initial Impounding (CFRD의 담수 후 정부침하량 예측)

  • Kim, Yong-Seong;Park, Han-Gyu;Lim, Heui-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.349-354
    • /
    • 2005
  • In this study, settlement characteristics of 23 CFRD was investigated from monitoring data and the method to estimate the crest settlements considering internal settlement during constructions was proposed. Moreover, crest settlement smaller than 20cm and deflection of face slab smaller than 20cm are not considered to be critical to the stability of large dam whose height is over 40m. Therefore, we assigned the region as safe zone that can be used as a guideline of maintenance of dam. These estimated data can be used in the design, construction and long-term maintenance in domestic CFRD hereafter.

  • PDF

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

Design and Performance Evaluation of a Marine Engine Fault Detection System Using a Proximity Sensor for a Marine Engine (선박 엔진용 근접 센서를 이용한 선박 엔진 고장진단시스템 설계 및 성능 분석)

  • Pack, In-Tack;Kim, Seung-Hwan;Kim, Dong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.619-626
    • /
    • 2016
  • This paper proposes the design and performance evaluation of a marine engine fault detection system using a proximity sensor for marine engine. Non-linearity is greatly reduced by using the sensor without increasing the response time by applying the CANopen protocol. The CANopen protocol enables the sensor to send initial values and measurement data. The marine engine fault detection system measures crankshaft deflection and the bottom dead center of the crosshead in real-time, which maintains stability and prevents the serious breakdown of the marine engine by use of an interlocking alarm monitoring system.

Optimum Life-Cycle Cost Design of Steel Box Girder Bridges Using Collaborative Optimization (협동 최적화 방법을 이용한 강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.201-210
    • /
    • 2001
  • In this study, large-scale distributed design approach for a life cycle cost (LCC) optimization of steel box girder bridges was implemented. A collaborative optimization approach is one of the multidisciplinary design optimization approaches and it has been proven to be best suited for distributed design environment. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost maintenance cost expected retrofit costs for strength, deflection and crack. To discuss the possibility of the application for the collaborative optimization of steel box girder bridges, the results of this algorithm are compared with those of single level algorithm. From the numerical investigations, the collaborative optimization approach proposed in this study may be expected to be new concepts and design methodologies associated with the LCC approach.

  • PDF

Life-Cycle Cost Optimization for Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성;정기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.128-136
    • /
    • 2001
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost (LU) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and crack. To demonstrate the effect of LCC optimum design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges design. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to more rational, economical and safer design.

  • PDF