• Title/Summary/Keyword: Inhomogeneous

Search Result 683, Processing Time 0.023 seconds

Analysis of Three-Dimensional Cracks in Inhomogeneous Materials Using Fuzzy Theory

  • Lee, Yang-Chang;Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.119-123
    • /
    • 2005
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. 3D finite element method(FEM) was used to obtain the SIF for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy theory. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete FE model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. The results were compared with those surface cracks in homogeneous materials. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations

  • Tao, Ming;Chen, Zhenghong;Li, Xibing;Zhao, Huatao;Yin, TuBing
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.285-296
    • /
    • 2016
  • The investigation of stress wave propagation in a medium with initial stress has very important application in the field of engineering. However, the previous research less consider the influence of initial stress gradient on wave propagation. In the present paper, the governing equation of wave propagation in elastic continuum material with inhomogeneous initial stress is derived, which indicated that the inhomogeneous initial stress changed the governing equation of wave propagation. Additionally, the definite problem of wave propagation in material with initial stress gradient is verified by using mathematical physics method. Based on the definite problem, the elastic displacement-time relationship of wave propagation is explored, which indicated that the inhomogeneous initial stress changed waveform and relationship of displacement-time histories. Furthermore, the spall process of blasting wave propagation from underground to earth surface is simulated by using LS-DYNA.

On the Reconstruction of Pinwise Flux Distribution Using Several Types of Boundary Conditions

  • Park, C. J.;Kim, Y. H.;N. Z. Cho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.311-319
    • /
    • 1996
  • We reconstruct the assembly pinwise flux using several types of boundary conditions and confirm that the reconstructed fluxes are the same with the reference flux if the boundary condition is exact. We test EPRI-9R benchmark problem with four boundary conditions, such as Dirichlet boundary condition, Neumann boundary condition, homogeneous mixed boundary condition (albedo type), and inhomogeneous mixed boundary condition. We also test reconstruction of the pinwise flux from nodal values, specifically from the AFEN [1, 2] results. From the nodal flux distribution we obtain surface flux and surface current distributions, which can be used to construct various types of boundary conditions. The result show that the Neumann boundary condition cannot be used for iterative schemes because of its ill-conditioning problem and that the other three boundary conditions give similar accuracy. The Dirichlet boundary condition requires the shortest computing time. The inhomogeneous mixed boundary condition requires only slightly longer computing time than the Dirichlet boundary condition, so that it could also be an alternative. In contrast to the fixed-source type problem resulting from the Dirichlet, Neumann, inhomogeneous mixed boundary conditions, the homogeneous mixed boundary condition constitutes an eigenvalue problem and requires longest computing time among the three (Dirichlet, inhomogeneous mixed, homogeneous mixed) boundary condition problems.

  • PDF

Characteristic Changes in Ground-Penetrating Radar Responses from Dielectric-Filled Nonmetallic Pipes Buried in Inhomogeneous Ground (비균일 지하에 묻혀있는 유전체 충진 비금속관에 의한 지표투과레이다 응답의 특성 변화)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2019
  • The variation of ground-penetrating radar(GPR) signal characteristics from dielectric-filled nonmetallic pipes buried in inhomogeneous ground are compared through a numerical simulation. The relative permittivity distribution of the ground is generated by using the continuous random media(CRM) technique. As a function of the relative permittivity of the material filling the nonmetallic pipe buried in the ground media, GPR signals are simulated by using the finite-difference time-domain(FDTD) method. We show that, unlike the case for homogeneous ground, the distortion characteristics of the reflected waves caused by the front convex surface and the rear concave surface of the pipe buried in inhomogeneous ground are different depending on the permittivity contrast between the inside and outside of the pipe.

Simulation of Inhomogeneous Texture through the Thickness Direction during Hot Rolling Deformation in Strip Cast Al-5wt%Mg Alloy (박판 주조된 Al-5 wt%Mg 합금의 열간압연 시 두께방향 불균일 집합조직 시뮬레이션)

  • Song, Young-Sik;Kim, Byoung-Jin;Kim, Hyoung-Wook;Kang, Seok-Bong;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.135-143
    • /
    • 2008
  • The inhomogeneous texture through the thickness direction can be developed during hot rolling deformation in aluminum alloy. In this study, the inhomogeneous texture evolution through the thickness direction during hot rolling deformation in Al-5 wt%Mg alloy produced by a new strip casting technology was measured experimentally. Macrotexture measurement was conducted using X-ray diffractometer. A finite element analysis with ABAQUS/StandardTM and rate sensitive polycrystal model were used to predict the evolution of hot rolling texture. The experimental results of Al-5 wt%Mg alloy were compared with calculated results. The shear texture components tend to be increased at the surface region of the hot-rolled specimen. It is found that triclinic sample symmetry is more accurate assumption for texture analysis and simulation in the surface region of hot-rolled aluminum alloy.

Torsional wave dispersion in a bi-layered hollow cylinder with inhomogeneous initial stresses caused by internal and external radial pressures

  • Akbarov, Surkay D.;Bagirov, Emin T.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.571-586
    • /
    • 2021
  • The present paper studies the influence of the inhomogeneous initial stresses in the bi-layered hollow cylinder and it is assumed that these stresses are caused by the hydrostatic pressures acting on the interior and outer free surfaces of the cylinder. The study is made by utilizing the version of the three-dimensional linearized theory of elastic waves in bodies with initial stresses for which the initial stress-strain state in bodies is determined within the scope of the classical linear theory of elasticity. For the solution to the corresponding eigenvalue problem, the discrete-analytical method is employed. Numerical results are presented and analyzed for concrete selected pairs of materials. According to these results and their analyses, it is established that, unlike homogeneous initial stresses, the influence of the inhomogeneous initial stresses on the torsional wave dispersion has not only quantitative but also qualitative character. For instance, in particular, it is established that as a result of the initial stresses caused by the hydrostatic pressure acting in the interior free surface of the cylinder, the cut-off frequency appears for the fundamental dispersive mode and the values of this frequency increase with the intensity of this pressure.

Limit analysis of seismic collapse for shallow tunnel in inhomogeneous ground

  • Guo, Zihong;Liu, Xinrong;Zhu, Zhanyuan
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.491-503
    • /
    • 2021
  • Shallow tunnels are vulnerable to earthquakes, and shallow ground is usually inhomogeneous. Based on the limit equilibrium method and variational principle, a solution for the seismic collapse mechanism of shallow tunnel in inhomogeneous ground is presented. And the finite difference method is employed to compare with the analytical solution. It shows that the analytical results are conservative when the horizontal and vertical stresses equal the static earth pressure and zero at vault section, respectively. The safety factor of shallow tunnel changes greatly during an earthquake. Hence, the cyclic loading characteristics should be considered to evaluate tunnel stability. And the curve sliding surface agrees with the numerical simulation and previous studies. To save time and ensure accuracy, the curve sliding surface with 2 undetermined constants is a good choice to analyze shallow tunnel stability. Parameter analysis demonstrates that the horizontal semiaxis, acceleration, ground cohesion and homogeneity affect tunnel stability greatly, and the horizontal semiaxis, vertical semiaxis, tunnel depth and ground homogeneity have obvious influence on tunnel sliding surface. It concludes that the most applicable approaches to enhance tunnel stability are reducing the horizontal semiaxis, strengthening cohesion and setting the tunnel into good ground.

Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep

  • Victor I. Rizov;Holm Altenbach
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.15-29
    • /
    • 2023
  • In this paper, fracture analysis of a continuously inhomogeneous arch structure with two longitudinal cracks is developed in terms of the time-dependent strain energy release rate. The arch under consideration exhibits non-linear creep behavior. The cross-section of the arch is a rectangle. The material is continuously inhomogeneous along the thickness of the cross-section. The arch is loaded by two bending moments applied at its end sections. The mechanical behavior of the material is described by using a non-linear stress-strain-time relationship. The two longitudinal cracks are located symmetrically with respect to the mid-span of the arch. Due to the symmetry, only half of the arch is considered. Time-dependent solutions to strain energy release rate are obtained by analyzing the balance of the energy. For verification, time-dependent solutions to the strain energy release rate are derived also by considering the time-dependent complementary strain energy. The evolution of the strain energy release rate with the time is analyzed. The effects of material inhomogeneity, locations of the two cracks along the thickness of the arch and the magnitude of the external loading on the time-dependent strain energy release rate are evaluated.

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.

Evaluation of Planning Dose Accuracy in Case of Radiation Treatment on Inhomogeneous Organ Structure (불균질부 방사선치료 시 계획 선량의 정확성 평가)

  • Kim, Chan Yong;Lee, Jae Hee;Kwak, Yong Kook;Ha, Min Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • Purpose: We are to find out the difference of calculated dose of treatment planning system (TPS) and measured dose in case of inhomogeneous organ structure. Materials and Methods: Inhomogeneous phantom is made with solid water phantom and cork plate. CT image of inhomogeneous phantom is acquired. Treatment plan is made with TPS (Pinnacle3 9.2. Royal Philips Electronics, Netherlands) and calculated dose of point of interest is acquired. Treatment plan was delivered in the inhomogeneous phantom by ARTISTE (Siemens AG, Germany) measured dose of each point of interest is obtained with Gafchromic EBT2 film (International Specialty Products, US) in the gap between solid water phantom or cork plate. To simulate lung cancer radiation treatment, artificial tumor target of paraffin is inserted in the cork volume of inhomogeneous phantom. Calculated dose and measured dose are acquired as above. Results: In case of inhomogeneous phantom experiment, dose difference of calculated dose and measured dose is about -8.5% at solid water phantom-cork gap and about -7% lower in measured dose at cork-solid water phantom gap. In case of inhomogeneous phantom inserted paraffin target experiment, dose difference is about 5% lower in measured dose at cork-paraffin gap. There is no significant difference at same material gap in both experiments. Conclusion: Radiation dose at the gap between two organs with different electron density is significantly lower than calculated dose with TPS. Therefore, we must be aware of dose calculation error in TPS and great care is suggested in case of radiation treatment planning on inhomogeneous organ structure.

  • PDF