• Title/Summary/Keyword: Inhibitory postsynaptic current

Search Result 10, Processing Time 0.024 seconds

Inhibitory and Excitatory Postsynaptic Currents of Medial Vestibular Nucleus Neurons of Rats

  • Chun, Sang-Woo;Choi, Jeong-Hee;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The medial vestibular nucleus (MVN) neurons are controlled by excitatory synaptic transmission from the vestibular afferent and commissural projections, and by inhibitory transmission from interneurons. Spontaneous synaptic currents of MVN neurons were studied using whole cell patch clamp recording in slices prepared from 13- to 17-day-old rats. The spontaneous inhibitory postsynaptic currents (sIPSCs) were significantly reduced by the $GABA_A$ antagonist bicuculline ($20{\mu}M$), but were not affected by the glycine antagonist strychnine ($1{\mu}M$). The frequency, amplitude, and decay time constant of sIPSCs were $4.3{\pm}0.9$ Hz, $18.1{\pm}2.0$ pA, and $8.9{\pm}0.4$ ms, respectively. Spontaneous excitatory postsynaptic currents (sEPSCs) were mediated by non-NMDA and NMDA receptors. The specific AMPA receptor antagonist GYKI-52466 ($50{\mu}M$) completely blocked the non-NMDA mediated sEPSCs, indicating that they are mediated by an AMPA-preferring receptor. The AMPA mediated sEPSCs were characterized by low frequency ($1.5{\pm}0.4$ Hz), small amplitude ($13.9{\pm}1.9$ pA), and rapid decay kinetics ($2.8{\pm}0.2$ ms). The majority (15/21) displayed linear I-V relationships, suggesting the presence of GluR2-containing AMPA receptors. Only 35% of recorded MVN neurons showed NMDA mediated currents, which were characterized by small amplitude and low frequency. These results suggest that the MVN neurons receive excitatory inputs mediated by AMPA, but not kainate, and NMDA receptors, and inhibitory transmission mediated by $GABA_A$ receptors in neonatal rats.

Modulation of Presynaptic GABA Release by Oxidative Stress in Mechanically-isolated Rat Cerebral Cortical Neurons

  • Hahm, Eu-Teum;Seo, Jung-Woo;Hur, Jin-Young;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.127-132
    • /
    • 2010
  • Reactive oxygen species (ROS), which include hydrogen peroxide ($H_2O_2$), the superoxide anion (${O_2}^-{\cdot}$), and the hydroxyl radical ($OH{\cdot}$), are generated as by-products of oxidative metabolism in cells. The cerebral cortex has been found to be particularly vulnerable to production of ROS associated with conditions such as ischemia-reperfusion, Parkinson's disease, and aging. To investigate the effect of ROS on inhibitory GABAergic synaptic transmission, we examined the electrophysiological mechanisms of the modulatory effect of $H_2O_2$ on GABAergic miniature inhibitory postsynaptic current (mIPSCs) in mechanically isolated rat cerebral cortical neurons retaining intact synaptic boutons. The membrane potential was voltage-clamped at -60 mV and mIPSCs were recorded and analyzed. Superfusion of 1-mM $H_2O_2$ gradually potentiated mIPSCs. This potentiating effect of $H_2O_2$ was blocked by the pretreatment with either 10,000-unit/mL catalase or $300-{\mu}M$ N-acetyl-cysteine. The potentiating effect of $H_2O_2$ was occluded by an adenylate cyclase activator, forskolin, and was blocked by a protein kinase A inhibitor, N -(2-[p-bromocinnamylamino] ethyl)-5-isoquinolinesulfonamide hydrochloride. This study indicates that oxidative stress may potentiate presynaptic GABA release through the mechanism of cAMP-dependent protein kinase A (PKA)-dependent pathways, which may result in the inhibition of the cerebral cortex neuronal activity.

Actions of Group I Metabotropic Glutamate Receptor Agonist on Synaptic Transmission and Ionic Currents in Rat Medial Vestibular Nucleus Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.215-222
    • /
    • 2009
  • Medial vestibular nucleus (MVN) neurons are involved in the reflex control of the head and eyes, and in the recovery of vestibular function after the formation of peripheral vestibular lesions. In our present study, whole cell patch clamp recordings were carried out on MVN neurons in brainstem slices from neonatal rats to investigate the actions of a group I metabotropic glutamate receptor (mGluR) agonist upon synaptic transmission and ionic currents. Application of the mGluR I agonist (S)-3,5- dihydroxyphenylglycine (DHPG) increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) but had no effect upon amplitude distributions. To then identify which of mGluR subtypes is responsible for the actions of DHPG in the MVN, we employed two novel subtype selective antagonists. (S)-(+)-$\alpha$-amino-a-methylbenzeneacetic acid (LY367385) is a potent competitive antagonist that is selective for mGluR1, whereas 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is a potent noncompetitive antagonist of mGluR5. Both LY367385 and MPEP antagonized the DHPG-induced increase of mIPSCs, with the former being more potent. DHPG was also found to induce an inward current, which can be enhanced under depolarized conditions. This DHPG-induced current was reduced by both LY367385 and MPEP. The DHPG-induced inward current was also suppressed by the PLC blocker U-73122, the $IP_3$ receptor antagonist 2-APB, and following the depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that the DHPG-induced inward current may be mainly regulated by the intracellular $Ca^{2+}$ store via the PLC-$IP_3$ pathway. In conclusion, mGluR I, via pre- and postsynaptic actions, may modulate the excitability of the MVN neurons.

Roles of Metabotropic Glutamate Receptors 1 and 5 in Rat Medial Vestibular Nucleus Neurons

  • Lee, Hae-In;Lee, Sung-Hyo;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • Using whole cell current- and voltage-clamp recording we investigated the characteristics and pharmacology of group I metabotropic glutamate receptor (mGluR)-mediated responses in rat medial vestibular nucleus (MVN) neurons. In current clamp conditions, activation of mGluR I by application of the group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) induced a direct excitation of MVN neurons that is characterized by depolarization and increased spontaneous firing frequency. To identify which of mGluR subtypes are responsible for the various actions of DHPG in MVN, we used two subtype-selective antagonists. (S)-(+)- alpha-amino-a-methylbenzeneacetic acid (LY367385) is a potent competitive antagonist that is selective for mGluR1, whereas 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is a potent noncompetitive antagonist that is selective for mGluR5. In voltage clamp conditions, DHPG application increased the frequency of spontaneous and miniature inhibitory postsynaptic currents (IPSCs) but had no effect on amplitude distributions. Antagonism of the DHPG-induced increase of miniature IPSCs required the blockade of both mGluR1 and mGluR5. DHPG application induced an inward current, which can be enhanced under depolarized conditions. DHPG-induced current was blocked by LY367385, but not by MPEP. Both LY367385 and MPEP antagonized the DHPG-induced suppression of the calcium activated potassium current ($I_{AHP}$). These data suggest that mGluR1 and mGluR5 have similar roles in the regulation of the excitability of MVN neurons, and show a little distinct. Furthermore, mGluR I, via pre- and postsynaptic actions, have the potential to modulate the functions of the MVN.

Muscarine $M_2$ Receptor-mediated Presynaptic Inhibition of GABAergic Transmission in Rat Meynert Neurons

  • Jang, Il-Sung;Akaike, Norio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Cholinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) by the activation of muscarine receptors was investigated in mechanically dissociated rat nucleus basalis of the Meynert neurons using the conventional whole-cell patch recording configuration. Muscarine $(10{\mu}M)$ reversibly and concentration-dependently decreased mIPSC frequency without affecting the current amplitude distribution. Muscarine action on GABAergic mIPSCs was completely blocked by $1{\mu}M$ methoctramine, a selective $M_2$ receptor antagonist, but not by $1{\mu}M$ pirenzepine, a selective $M_1$ receptor antagonist. NEM $(10{\mu}M),$ a G-protein uncoupler, attenuated the inhibitory action of muscarine on GABAergic mIPSC frequency. Muscarine still could decrease GABAergic mIPSC frequency even in the $Ca^{2+}-free$ external solution. However, the inhibitory action of muscarine on GABAergic mIPSCs was completely occluded in the presence of forskolin. The results suggest that muscarine acts presynaptically and reduces the probability of spontaneous GABA release, and that such muscarine-induced inhibitory action seems to be mediated by G-protein-coupled $M_2$ receptors, via the reduction of cAMP production. Accordingly, $M_2$ receptor-mediated disinhibition of nBM neurons might play one of important roles in the regulation of cholinergic outputs from nBM neurons as well as the excitability of nBM neurons themselves.

CORRELATIONS BETWEEN HIPPOCAMPAL THETA RHYTHM AND INTRACELLULAR CHARACTERISTICS OF PYRAMIDAL NEURONS (해마 theta 리듬과 pyramidal neuron의 세포내 특성과의 상관관계)

  • Kwon, Oh-Heung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyeun-Jung;Lee, Man-Gee;Cho, Jin-Hwa;Choi, Byung-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.671-682
    • /
    • 1998
  • Electrophysiological phenomena of pyramidal cells in the CA1 area of the dorsal hippocampus were recorded from and filled with neurobiotin in anesthetized rats. The electropharmacological properties of membrane as well as the cellular-synaptic generation of rhythmic slow activity (theta) were examined. The intracellular response characteristics of these pyramidal cells were distinctly different from responses of interneurons. Pyramidal cells had a high resting membrane potential, a low input resistance, and a large amplitude action potential. A afterhyperpolarization was followed a single action potential. Most of pyramidal cells did not display a spontaneous firing. Pyramidal cells displayed weak inward rectification and anodal break excitation. The slope of the frequency-current relation was 53.4 Hz/nA for the first interspike interval and 15.9 Hz/nA for the last intervals, suggesting the presence of spike frequency adaptation. Neurobiotin-filled neurons showed pyramidal morphology. Cells were generally bipolar dendritc processes ramifying in stratum lacunosum-moleculare, radiatum, and oriens. Commissural stimulation discharged pyramidal cells, followed by excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs). The frequency of theta-related membrane potential oscillation was voltage-independent in pyramidal neurons. At strong depolarization levels (less than 30 mV) pyramidal cells emitted sodium spike oscillation, phase-locked to theta. The observations provide direct evidence that theta-related rhythmic hyperpolarization of principal cells is brought by the rhythmically discharging interneurons. Furthermore, the findings in which interneurons were also paced by rhythmic inhibitory postsynaptic potentials during theta suggest that they were periodically hyperpolarized by their GABAergic septal afferents.

  • PDF

Layer-specific cholinergic modulation of synaptic transmission in layer 2/3 pyramidal neurons of rat visual cortex

  • Cho, Kwang-Hyun;Lee, Seul-Yi;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.317-328
    • /
    • 2019
  • It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively. Kinetics of L1-EPSC was slower than that of L4-EPSC. L1-EPSC showed presynaptic depression while L4-EPSC was facilitating. In contrast, inhibitory postsynaptic currents showed similar paired-pulse ratio between layer 1 and layer 4 stimulations with depression only at 100 Hz. Cholinergic stimulation induced presynaptic depression by activating muscarinic receptors in excitatory and inhibitory synapses to similar extents in both inputs. However, nicotinic stimulation enhanced excitatory synaptic transmission by ~20% in L4-EPSC. Rectification index of AMPA receptors and AMPA/NMDA ratio were similar between synapses in distal apical and perisomatic dendrites. These results provide basic properties and cholinergic modulation of synaptic transmission between distal apical and perisomatic dendrites in L2/3 PyNs of the visual cortex, which might be important for controlling information processing balance depending on attentional state.

Nitric Oxide Modulation of GABAergic Synaptic Transmission in Mechanically Isolated Rat Auditory Cortical Neurons

  • Lee, Jong-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.461-467
    • /
    • 2009
  • The auditory cortex (A1) encodes the acquired significance of sound for the perception and interpretation of sound. Nitric oxide (NO) is a gas molecule with free radical properties that functions as a transmitter molecule and can alter neural activity without direct synaptic connections. We used whole-cell recordings under voltage clamp to investigate the effect of NO on spontaneous GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons preserving functional presynaptic nerve terminals. GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in the A1 were completely blocked by bicuculline. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP), reduced the GABAergic sIPSC frequency without affecting the mean current amplitude. The SNAP-induced inhibition of sIPSC frequency was mimicked by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane permeable cyclic-GMP analogue, and blocked by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger. Blockade of presynaptic $K^+$ channels by 4-aminopyridine, a $K^+$ channel blocker, increased the frequencies of GABAergic sIPSCs, but did not affect the inhibitory effects of SNAP. However, blocking of presynaptic $Ca^{2+}$ channels by $Cd^{2+}$, a general voltage-dependent $Ca^{2+}$ channel blocker, decreased the frequencies of GABAergic sIPSCs, and blocked SNAP-induced reduction of sIPSC frequency. These findings suggest that NO inhibits spontaneous GABA release by activation of cGMP-dependent signaling and inhibition of presynaptic $Ca^{2+}$ channels in the presynaptic nerve terminals of A1 neurons.

Botulinum toxin type A enhances the inhibitory spontaneous postsynaptic currents on the substantia gelatinosa neurons of the subnucleus caudalis in immature mice

  • Jang, Seon-Hui;Park, Soo-Joung;Lee, Chang-Jin;Ahn, Dong-Kuk;Han, Seong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.539-546
    • /
    • 2018
  • Botulinum toxin type A (BoNT/A) has been used therapeutically for various conditions including dystonia, cerebral palsy, wrinkle, hyperhidrosis and pain control. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) receive orofacial nociceptive information from primary afferents and transmit the information to higher brain center. Although many studies have shown the analgesic effects of BoNT/A, the effects of BoNT/A at the central nervous system and the action mechanism are not well understood. Therefore, the effects of BoNT/A on the spontaneous postsynaptic currents (sPSCs) in the SG neurons were investigated. In whole cell voltage clamp mode, the frequency of sPSCs was increased in 18 (37.5%) neurons, decreased in 5 (10.4%) neurons and not affected in 25 (52.1%) of 48 neurons tested by BoNT/A (3 nM). Similar proportions of frequency variation of sPSCs were observed in 1 and 10 nM BoNT/A and no significant differences were observed in the relative mean frequencies of sPSCs among 1-10 nM BoNT/A. BoNT/A-induced frequency increase of sPSCs was not affected by pretreated tetrodotoxin ($0.5{\mu}M$). In addition, the frequency of sIPSCs in the presence of CNQX ($10{\mu}M$) and AP5 ($20{\mu}M$) was increased in 10 (53%) neurons, decreased in 1 (5%) neuron and not affected in 8 (42%) of 19 neurons tested by BoNT/A (3 nM). These results demonstrate that BoNT/A increases the frequency of sIPSCs on SG neurons of the Vc at least partly and can provide an evidence for rapid action of BoNT/A at the central nervous system.

The Development of Phasic and Tonic Inhibition in the Rat Visual Cortex

  • Jang, Hyun-Jong;Cho, Kwang-Hyun;Park, Sung-Won;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.399-405
    • /
    • 2010
  • Gamma-aminobutyric acid (GABA)-ergic inhibition is important in the function of the visual cortex. In a previous study, we reported a developmental increase in $GABA_A$ receptor-mediated inhibition in the rat visual cortex from 3 to 5 weeks of age. Because this developmental increase is crucial to the regulation of the induction of long-term synaptic plasticity, in the present study we investigated in detail the postnatal development of phasic and tonic inhibition. The amplitude of phasic inhibition evoked by electrical stimulation increased during development from 3 to 8 weeks of age, and the peak time and decay kinetics of inhibitory postsynaptic potential (IPSP) and current (IPSC) slowed progressively. Since the membrane time constant decreased during this period, passive membrane properties might not be involved in the kinetic changes of IPSP and IPSC. Tonic inhibition, another mode of $GABA_A$ receptor-mediated inhibition, also increased developmentally and reached a plateau at 5 weeks of age. These results indicate that the time course of the postnatal development of GABAergic inhibition matched well that of the functional maturation of the visual cortex. Thus, the present study provides significant insight into the roles of inhibitory development in the functional maturation of the visual cortical circuits.