• Title/Summary/Keyword: Inhibitor of ${\kappa}B$ kinase

Search Result 99, Processing Time 0.03 seconds

Ginsenoside Rg2 Inhibits Lipopolysaccharide-Induced Adhesion Molecule Expression in Human Umbilical Vein Endothelial Cell

  • Cho, Young-Suk;Kim, Chan Hyung;Ha, Tae-Sun;Lee, Sang Jin;Ahn, Hee Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.133-137
    • /
    • 2013
  • Vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), P- and E-selectin play a pivotal role for initiation of atherosclerosis. Ginsenoside, a class of steroid glycosides, is abundant in Panax ginseng root, which has been used for prevention of illness in Korea. In this study, we investigated the mechanism(s) by which ginsenoside Rg2 may inhibit VCAM-1 and ICAM-1 expressions stimulated with lipopolysaccharide (LPS) in human umbilical vein endothelial cell (HUVEC). LPS increased VCAM-1 and ICAM-1 expression. Ginsenoside Rg2 prevented LPS-mediated increase of VCAM-1 and ICAM-1 expression. On the other hand, JSH, a nuclear factor kappa B (NF-${\kappa}B$) inhibitor, reduced both VCAM-1 and ICAM-1 expression stimulated with LPS. SB202190, inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), and wortmannin, phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, reduced LPS-mediated VCAM-1 but not ICAM-1 expression. PD98059, inhibitor of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) did not affect VCAM-1 and ICAM-1 expression stimulated with LPS. SP600125, inhibitor of c-Jun N-terminal kinase (JNK), reduced LPS-mediated ICAM-1 but not VCAM-1 expression. LPS reduced IkappaB${\alpha}$ ($I{\kappa}B{\alpha}$) expression, in a time-dependent manner within 1 hr. Ginsenoside Rg2 prevented the decrease of $I{\kappa}B{\alpha}$ expression stimulated with LPS. Moreover, ginsenoside Rg2 reduced LPS-mediated THP-1 monocyte adhesion to HUVEC, in a concentration-dependent manner. These data provide a novel mechanism where the ginsenoside Rg2 may provide direct vascular benefits with inhibition of leukocyte adhesion into vascular wall thereby providing protection against vascular inflammatory disease.

Role of Protein Kinases on NE-$_{\kappa}B$ Activation and Cell Death in Bovine Cerebral Endothelial Cells

  • Ahn, Young-Soo;Kim, Chul-Hoon;Kim, Joo-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • Nuclear factor $_{\kappa}B\;(NF-_{\kappa}B)$ activation is modulated by various protein kinases. Activation of $NF-_{\kappa}B$ is known to be important in the regulation of cell viability. The present study investigated the effect of inhibitors of protein tyrosine kinase (PTK), protein kinase C (PKC) and protein kinase A (PKA) on $NF-_{\kappa}B$ activity and the viability of bovine cerebral endothelial cells (BCECs). In serum-deprivation-induced BCEC death, low doses of $TNF{\alpha}$ showed a protective effect. $TNF{\alpha}$ induced $NF-_{\kappa}B$ activation within 4 h in serum-deprivation. PTK inhibitors (herbimycin A and genistein) and PKC inhibitor (calphostin C) prevented $NF-_{\kappa}B$ activation stimulated by $TNF{\alpha}.$ Likewise, these inhibitors prevented the protective effect of $TNF{\alpha}.$ In contrast to $TNF{\alpha}-stimulated\;NF-_{\kappa}B$ activity, basal $NF-_{\kappa}B$ activity of BCECs in media containing serum was suppressed only by calphostin C, but not by herbimycin A. As well BCEC death was also induced only by calphostin C in serum-condition. H 89, a PKA inhibitor, did not affect the basal and $TNF{\alpha}-stimulated\;NF-_{\kappa}B$ activities and the protective effect of $TNF{\alpha}$ on cell death. These data suggest that modulation of $NF-_{\kappa}B$ activation could be a possible mechanism for regulating cell viability by protein kinases in BCECs.

  • PDF

Pyrrolidine dithiocarbamate-induced activation of ERK and increased expression of c-Fos in mouse embryonic stem cells

  • Kim, Young-Eun;Park, Jeong-A;Nam, Ki-Hoan;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.148-153
    • /
    • 2009
  • Pyrrolidine dithiocarbamate (PDTC) is a stable anti-oxidant or pro-oxidant, depending on the situation, and it is widely used to inhibit the activation of NF-${\kappa}B$. We recently reported that PDTC activates the MIP-2 gene in a NF-${\kappa}B$-independent and c-Jun-dependent manner in macrophage cells. In this work, we found that PDTC activates signal transduction pathways in mouse ES cells. Among the three different mitogen-activated protein kinase (MAPK) pathways, including the extracellular-signal-regulated kinase (ERK), p38 MAP kinase, and stress-activated protein kinase (SAPK)/Jun N-terminal kinase (JNK) pathways, only the ERK pathway was significantly activated in mouse ES cells after stimulation with PDTC. Additionally, we observed a synergistic activation of ERK and induction of c-Fos after stimulation with PDTC in the presence of mouse embryonic fibroblast (MEF) conditioned medium. In contrast, another NF-${\kappa}B$ inhibitor, BMS-345541, did not activate the MAP kinase pathways or induce expression of c-Fos. These results suggest that changes in the presence of the NF-${\kappa}B$ inhibitor PDTC should be carefully considered when it used with mouse ES cells.

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.

Magnolol Inhibits LPS-induced NF-${\kappa}B$/Rel Activation by Blocking p38 Kinase in Murine Macrophages

  • Li, Mei Hong;Kothandan, Gugan;Cho, Seung-Joo;Huong, Pham Thi Thu;Nan, Yong Hai;Lee, Kun-Yeong;Shin, Song-Yub;Yea, Sung-Su;Jeon, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.353-358
    • /
    • 2010
  • This study demonstrates the ability of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, to inhibit LPS-induced expression of iNOS gene and activation of NF-${\kappa}B$/Rel in RAW 264.7 cells. Immunohisto-chemical staining of iNOS and Western blot analysis showed magnolol to inhibit iNOS gene expression. Reporter gene assay and electrophoretic mobility shift assay showed that magnolol inhibited NF-${\kappa}B$/Rel transcriptional activation and DNA binding, respectively. Since p38 is important in the regulation of iNOS gene expression, we investigated the possibility that magnolol to target p38 for its anti-inflammatory effects. A molecular modeling study proposed a binding position for magnolol that targets the ATP binding site of p38 kinase (3GC7). Direct interaction of magnolol and p38 was further confirmed by pull down assay using magnolol conjugated to Sepharose 4B beads. The specific p38 inhibitor SB203580 abrogated the LPS-induced NF-${\kappa}B$/Rel activation, whereas the selective MEK-1 inhibitor PD98059 did not affect the NF-${\kappa}B$/Rel. Collectively, the results of the series of experiments indicate that magnolol inhibits iNOS gene expression by blocking NF-${\kappa}B$/Rel and p38 kinase signaling.

Blockade of p38 Mitogen-activated Protein Kinase Pathway Inhibits Interleukin-6 Release and Expression in Primary Neonatal Cardiomyocytes

  • Chae, Han-Jung;Kim, Hyun-Ki;Lee, Wan-Ku;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.6
    • /
    • pp.319-325
    • /
    • 2002
  • The induction of interleukin-6 (IL-6) using combined proinflammatory agents $(LPS/IFN-{\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ was studied in relation to p38 mitogen-activated protein kinase (MAPK) and $NF-{\kappa}B$ transcriptional factor in primary neonatal cardiomyocytes. When added to cultures of cardiomyocytes, the combined agents $(LPS/IFN-[\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ had stimulatory effect on the production of IL-6 and the elevation was significantly reduced by SB203580, a specific p38 MAPK inhibitor. SB203580 inhibited protein production and gene expression of IL-6 in a concentration-dependent manner. In this study, $IFN-{\gamma}$ enhancement of $TNF-{\alpha}-induced\;NF-{\kappa}B$ binding affinity as well as p38 MAP kinase activation was observed. However, a specific inhibitor of p38 MAPK, SB203580, had no effect on $TNF-{\alpha}/IFN-{\gamma}\;or\;LPS/IFN-{\gamma}-induced\;NF-{\kappa}B$ activation. This study strongly suggests that these pathways about $TNF-{\alpha}/IFN-{\gamma}$ or $LPS/IFN-{\gamma}-activated$ IL-6 release can be primarily dissociated in primary neonatal cardiomyocytes.

Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells

  • Cha, Jae Hoon;Kim, Woo Kyoung;Ha, Ae Wha;Kim, Myung Hwan;Chang, Moon Jeong
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.90-96
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Although the antioxidative effects of lycopene are generally known, the molecular mechanisms underlying the anti-inflammatory properties of lycopene are not fully elucidated. This study aimed to examine the role and mechanism of lycopene as an inhibitor of inflammation. METHODS/MATERIALS: Lipopolysaccharide (LPS)-stimulated SW 480 human colorectal cancer cells were treated with 0, 10, 20, and $30{\mu}M$ lycopene. The MTT assay was performed to determine the effects of lycopene on cell proliferation. Western blotting was performed to observe the expression of inflammation-related proteins, including nuclear factor-kappa B ($NF-{\kappa}B$), inhibitor kappa B ($I{\kappa}B$), mitogen-activated protein kinase (MAPK), extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 (p38 MAP kinase). Real-time polymerase chain reaction was performed to investigate the mRNA expression of tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were determined via enzyme-linked immunosorbent assays. RESULTS: In cells treated with lycopene and LPS, the mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, iNOS, and COX-2 were decreased significantly in a dose-dependent manner (P < 0.05). The concentrations of $PGE_2$ and NO decreased according to the lycopene concentration (P < 0.05). The protein expressions of $NF-{\kappa}B$ and JNK were decreased significantly according to lycopene concertation (P < 0.05). CONCLUSIONS: Lycopene restrains $NF-{\kappa}B$ and JNK activation, which causes inflammation, and suppresses the expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, COX-2, and iNOS in SW480 human colorectal cancer cells.

A Sphingosine Kinase-1 Inhibitor, SKI-II, Induces Growth Inhibition and Apoptosis in Human Gastric Cancer Cells

  • Li, Pei-Hua;Wu, Jin-Xia;Zheng, Jun-Nian;Pei, Dong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10381-10385
    • /
    • 2015
  • SKI-II has been reported as an inhibitor of sphingosine kinase 1 and has been extensively used to prove the involvement of sphingosine kinase and sphingosine-1-phosphate (Sphk1) in cellular processes. In the current study, we investigated the effects of SKI-II and its potential mechanisms in human gastric cancer SGC7901 cells. After treatment with SKI-II, cell growth, cell cycle distribution, apoptosis, expression of Sphk1, NF-${\kappa}B$, Bcl-2, Bax and p27 were assessed by MTT assay, flow cytometry, electron microscopy, immunocytochemistry and Western-blot assay, respectively. Our results showed that SKI-II markedly inhibited SGC7901 cell survival in a dose-dependent manner, reduced cell proliferation with accumulation of cells in the G0/G1 phase and induced apoptosis in the tumor cells. Furthermore, Western blotting and immunocytochemistry showed that the expression of p27 and Bax was increased significantly, but the expression of NF-${\kappa}B$, Bcl-2 and Sphk1 decreased by different degrees. These results indicate that SKI-II induced cell growth arrest and apoptosis. The increased apoptotic sensitivity of SGC7901 was correlated with NF-${\kappa}B$ or Bcl-2/Bax activation.

p38 MAPK and $NF-_{\kappa}B$ are Required for LPS-Induced RANTES Production in Immortalized Murine Microglia (BV-2)

  • Jang, Sae-Byeol;Lee, Kweon-Haeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.339-346
    • /
    • 2000
  • Using murine immortalized microglial cells (BV-2), we examined the regulation of RANTES production stimulated by lipopolysaccharide (LPS), focusing on the role of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B.$ The result showed that RANTES (regulated upon activation of normal T cell expressed and secreted) was induced at the mRNA and protein levels in a dose- and time-dependent manner in response to LPS. From investigations of second messenger pathways involved in regulating the secretion of RANTES, we found that LPS induced phosphorylation of extracellular signal-regulated kinase (Erk), p38 MAPK and c-Jun-N-terminal kinase (JNK), and activated $(NF)-{\kappa}B.$ To determine whether this MAPK phosphorylation is involved in LPS-stimulated RANTES production, we used specific inhibitors for p38 MAPK and Erk, SB 203580 and PD 98059, respectively. LPS-induced RANTES production was reduced approximately 80% at $25\;{\mu}M$ of SB 203580 treatment. But PD 98059 did not affect RANTES production. Pyrrolidine-dithiocarbamate (PDTC), $(NF)-{\kappa}B$ inhibitor, reduced RANTES secretion. These results suggest that LPS-induced RANTES production in microglial cells (BV-2) is mainly mediated by the coordination of p38 MAPK and $(NF)-{\kappa}B$ cascade.

  • PDF