• Title/Summary/Keyword: Inhibiting Effect

Search Result 1,544, Processing Time 0.03 seconds

Effect of Sasa Borealis and White Lotus Roots and Leaves on Insulin Action and Secretion In Vitro (In vitro에서 조릿대, 연근과 연잎이 인슐린 작용 및 분비에 미치는 영향)

  • Ko, Byoung-Seob;Jun, Dong-Wha;Jang, Jin-Sun;Kim, Ju-Ho;Park, Sun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.114-120
    • /
    • 2006
  • Anti-diabetic effects of extracts and fractions of Sasa borealis (SB), white lotus roots (LR) and leaves (LL), and their mixture were determined in 3T3-L1 adipocytes and Min6 cells by investigating insulin-sensitizing activity and glucose-stimulated insulin secretion, respectively. SB, LR, LL, and mixture of SB, LR, and LL (3 : 2 : 3) were extracted using 70% ethanol, and m mixture extract was fractionated by XAD-4 column chromatography with serial mixture solvents of methanol and water. Fractional extractions were utilized for anti-diabetic effect assay. SB and LR extracts increased insulin-stimulated glucose uptake, but not as much as mixture of SB, LR, and LL. Significant insulin-sensitizing activities of 20 and 80% methanol fractions of SB, LR, and LL mixture extract were observed in 3T3-L1 adipocytes, giving 0.5 or $5\;{\mu}g/mL$ each fraction with 0.2 nM insulin to attain glucose uptake level similar to that attained by 10 nM insulin alone. Similar to pioglitazone, peroxisome proliferators-activated $receptor-{\gamma}\;(PPAR-{\gamma})$ agonist, 20 and 80% methanol fractions increased adipocytes by stimulating differentiation from fibroblasts and triglyceride synthesis. LL extract and 20, 60, and 80% methanol fractions of the mixture suppressed ${\alpha}-amylase$ activity, but did not modulate insulin secretion capacity of Min6 cells in both low and high glucose media. These data suggest 20 and 80% methanol tractions contain potential insulin sensitizers with functions similar to that of $PPAR-{\gamma}$ agonist. Crude extract of SB, LR, and LL mixture possibly improves glucose utilization by enhancing insulin-stimulated glucose uptake and inhibiting carbohydrate digestion without affecting insulin secretion in vivo.

The Effects of Ethylene Absorbent on the Quality of 'Fuyu' Persimmon Fruits in MA Package (MA 포장내 에틸렌 흡착 처리가 단감 '부유'의 선도유지에 미치는 영향)

  • Ahn, Gwang-Hwan;Ha, Yeong-Le;Shon, Gil-Man;Song, Won-Doo;Seo, Kwang-Ki;Choi, Seong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1278-1284
    • /
    • 2000
  • The study was performed to elucidate the effects of ethylene-absorbent on the quality of 'Fuyu' persimmon fruits in the MA package. Five persimmons were packed in a MA package film (low density polyethylene, 0.055 mm film thickness), and stored at $-0.5^{\circ}C$ for 60 days. Two persimmons were repacked in a MA package with or without ethylene absorbent $(1\;M\;KMnO_4+zeolite)$ and stored at $-0.5^{\circ}C$. Ten days later, these packages was moved to $2^{\circ}C$ or $25^{\circ}C$ storage room to examine the effect of the ethylene-absorbent on the quality of the fruits. Ethylene removal by enclosed ethylene absorbent in MA packaging reduced the rate of fruit respiration at $25^{\circ}C$, so that $O_2$ and $CO_2$ concentration in packing were maintained higher and lower, respectively, compared to control. These effects were not observed, however, in $2^{\circ}C$ post-storage. Fruit firmness and sugar composition were also influenced by ethylene absorbent, showing more delayed flesh softening and higher sucrose concentration in ethylene absorbent treated fruits than control. But ethylene-absorbent treatment lowered glucose and fructose concentration. That shows that ethylene could influence on sugar composition by inhibiting sucrose inversion to glucose and fructose. The production of ethanol and acetaldehyde was reduced by ethylene removal, but the effect was not so high as other quality indices.

  • PDF

Cancer Chemopreventive Effects of Ginsenoside $Rg_3,\;Rg_5,\;Rh_2$ and BST from Enzymatically Fermented Korean Ginseng Extract

  • Yun Taik-Koo
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.35-46
    • /
    • 2002
  • Panax ginseng C. A. Meyer has been one of the most highly recognized medicinal herbs in the Orient. Previous experiments have demonstrated that $Rg_3,\;and\;Rg_5$ statistically significantly decreased the incidence of benzo(a)pyrene-induced mouse lung tumor, $Rh_2$ showed tendency of decrease and $Rh_1$ showed no effect. It was, therefore, concluded that $Rg_3,\;Rg_5\;and\;Rh_2$ are active cancer chemopreventive components in red ginseng and they either singularly or synergistically act in the prevention of cancer. This study was undertaken to compare the cancer chemopreventive effects of $Rg_3,\;Rg_5\;and\;Rh_2$(purity: more than $60\%$) isolated from fermented ginseng extract and BST fermented ginseng with fortified ginsenoside $Rg_3\;and\;Rh_2$. The cancer chemopreventive effects were investigated in experimental groups treated with benzo(a)pyrene(BP) with ginsenoside $Rg_3,\;Rg_5\;Rh_2\;or\;BST$ at three doses of $50^{\circ}C/ml,\;100^{\circ}C/ml\;and\;200^{\circ}C/ml$ When mice given with $50^{\circ}C/ml$ concentration of ginsenoside $Rg_3$ combined with BP for 6 weeks after BP administration, $Rg_3\;showed\;60\%$ of lung tumor incidence, where as $100^{\circ}C/ml\;and\;200^{\circ}C/ml\;of\;Rg_3$ combined with BP groups had significant decrease of incidence $(40.0\%)$ respectively, with the inhibition rate being $35.5\%.$ While the tumor incidence was not decreased in the group treated with BP and 50 of $Rg_5,$ the incidence was $34.0\%\;and\;32.0\%$ in the group treated with BP and 100 and 200 of $Rg_5$, respectively. These incidences were significantly less than the group treated with BP alone, with the inhibition rate being $45.2\%\;and\;48.4\%,$ respectively. On the other hand, in the group treated with BP and 50 of ginsenoside $Rh_2,$ the tumor incidence was not decreased. However, the incidence was $40.0\%\;and\;38.8\%$ in the experimental treated with BP and 100 and 200 of $Rh_2,$ respectively, with the inhibition rate being $45.2\%\;and\;48.4\%,$ respectively. In addition, the incidence showed the tendency to decrease in the experimental group treated with BP and 50 of BST which contained $16.2\%\;of\;Rh_2,\;15.4\%\;of\;Rg_3\;and\;2.5%\;of\;Rg_5.$ The tumor incidence was $54.0\%$ in this group. In the group treated with 100 and 200 of EST, the incidence was $34.0\%\;and\;30.0\%,$ respectively, the incidences significantly being lower than the group treated with BP alone, with the inhibiting rate being $45.2\%\;and\;51.6\%,$ respectively. The results of this study strongly suggested that ginsenoside $Rg_3,\;Rg_5\;and\;Rh_2$ are the active components of red ginseng having a cancer chemopreventive activity and $Rg_5$ is the strongest cancer chempopreventive among them. On the other hand, the results demonstrating that the incidence of lung tumor was more markedly reduced by BST fermented ginseng with fortified ginsenoside $Rh_2\;or\;Rg_3$ compared to the single component alone, suggest that the combination of these components may remarkablely improve the cancer preventive effect

  • PDF

Inhibitory Effects of Locusta migratoria Ethanol Extracts on RANKL-induced Osteoclast Differentiation (RANKL 유도된 파골세포 분화에 대한 풀무치 에탄올 추출물의 분화 억제 효과)

  • Baek, Minhee;Seo, Minchul;Lee, Joon Ha;Lee, Hwa Jeong;Kim, In-Woo;Kim, Sun Young;Kim, Mi-Ae;Kim, Sunghyun;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1104-1110
    • /
    • 2019
  • Recently, there has been an increase in the elderly population of the world. Consequently, bone metabolic diseases such as osteoporosis are emerging as a social problem. Osteoclasts play a role in bone resorption, and osteoporosis is induced when bone resorption occurs excessively. Because currently used bone resorption inhibitors may cause side effects when used for a long period of time, it is necessary to develop a new material that effectively inhibits osteoclast differentiation. This study aimed to confirm the inhibitory effect of ethanol extract of Locusta migratoria on RANKL-induced osteoclast differentiation and its mechanism. The toxicity and proliferation effects of LME on RAW264.7 osteoclasts were measured by an MTS assay. There was no cytotoxicity or proliferation when the osteoclasts were treated with up to $2,000{\mu}g/ml$ of LME. In order to confirm the effect of LME on the differentiation of osteoclasts, osteoclasts were treated with RANKL alone or with LME for 3 days. As a result of a TRAP (tartrate-resistant acid phosphatase) assay, the increasing osteoclast differentiation by RANKL decreased in a concentration-dependent manner with the treatment of LME. In addition, LME suppressed the expression of differentiation-related marker genes (TRAP, RANK, NFATc1, and CK) and proteins (NFATc1 and c-Src) that had been increased by RANKL. Also, LME influenced the $NF-{\kappa}B$, ERK and JNK signaling pathways, resulting in the inhibition of osteoclast differentiation. These results suggest that LME may be used as a novel functional material for the prevention and treatment of osteoporosis by playing a role in inhibiting bone absorption.

Ethanol Extract of Glycyrrhiza uralensis Protects Against Oxidative Stress-induced DNA Damage and Apoptosis in Retinal Pigment Epithelial Cells (망막색소상피세포에서 감초 추출물의 산화적 스트레스에 의한 DNA 손상 및 apoptosis 유발의 차단 효과)

  • Kim, So Young;Kim, Jeong-Hwan;Kim, Sung Ok;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1273-1280
    • /
    • 2019
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly population, and damage to retinal pigment epithelial (RPE) cells due to oxidative stress contributes to the development of AMD. Glycyrrhiza uralensis Fischer is one of the most widely used herbal medicines for the treatment of various diseases in Asian countries. Although recent studies indicated that treatment with G. uralensis can protect cells from oxidative stress, its mechanisms in RPE cells remain unknown. We evaluated the effect of a G. uralensis ethanol extract (GU) on $H_2O_2$-induced oxidative injury in ARPE-19 RPE cells. The GU pretreatment attenuated reactive oxygen species (ROS) generation induced by $H_2O_2$, which was associated with induced expression of nuclear factor erythroid-derived-2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). GU also suppressed $H_2O_2$-induced DNA damage and mitochondrial dysfunction. The inhibitory effect of GU on $H_2O_2$-induced apoptosis was associated with the protection of caspase-3 activation. Overall, GU appeared to protect RPE cells from oxidative injury by inhibiting DNA damage and reducing apoptosis. Further studies are needed to determine the regulation of Nrf2-mediated HO-1 expression, but our results suggest the possibility of using GU to reduce the risk of AMD.

Effect of GABA Regulation and Activities of Filaggrin and Claudin-1 through Inhibiting Stress Hormone Production by Prunus tomentosa Extract In Vitro (앵두 추출물의 세포 수준에서의 스트레스 호르몬 생성 억제를 통한 GABA 조절 및 Filaggrin 과 Claudin-1 의 활성 효과)

  • Won Yeoung Choi;Sung Min Park;Ra Hye Kim;Hyoung Jin Lee;Jung No Lee;Hwa Sun Ryu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.179-192
    • /
    • 2024
  • In this study, six types of natural products, Prunus tomentosa (P. tomentosa), Akebia quinata (A. quinata), Prunus armeniaca (P. armeniaca), Smallanthus sonchifolius (S. sonchifolius), Citrus japonica (C. japonica), and Citrus australasica (C. australasica), were used to verify the effect of improving sleep and skin barriers by stress relief. As a result of the experiment, the production of cortisol, a stress hormone, was significantly inhibited by the P. tomentosa, C. australasica, A. quinata, and C. japonica among the six natural products. In addition, the expression of GAD67, a GABA-producing enzyme involved in sleep regulation, showed a significant increase in P. tomentosa purified water extract and C. australasica 50% ethanol extract, and the extract by each P. tomentosa solvent was found to have the highest total polyphenol content. Based on the results, the P. tomentosa extract with the highest activity was finally selected, and subsequent experiments were conducted. Among each P. tomentosa solvent extract, the DPPH radical scavenging activity was the highest in the 30% ethanol extract, and purified water extract increased GABA production and skin barrier factors filaggrin and claudin-1 expression the highest. HPLC analysis confirmed quercitrin as the main component of P. tomentosa extract, and quercitrin content by extraction solvent was high in the order of 30% ethanol > purified water > 70% ethanol > 50% ethanol. Quercitrin inhibited the production of cortisol in a concentration-dependent manner, significantly increasing GAD67 expression and GABA production, which had been reduced by cortisol. From the results of this study, it has been demonstrated that P. tomentosa can be used as a cosmetic material to help improve sleep and strengthen skin barriers by relieving stress.

Examination of Antioxidant and Immune-enhancing Functional Substances in Fermented Sea Cucumber (발효해삼의 항산화 및 면역강화 기능성 물질의 분석)

  • Sam Woong Kim;Ga-Hee Kim;Beom Cheol Kim;Lee Yu Bin;Lee Ga Bin;Sang Wan Gal;Chul Ho Kim;Woo Young Bang;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.485-492
    • /
    • 2024
  • Sea cucumbers contain more than 50% protein in their solid content, and they also possess various bioactive substances such as saponins and mucopolysaccharides. This study analyzed the activities of various enzymes derived from Bacillus and lactic acid bacteria and determined to degrade the components of sea cucumbers. Among the analyzed strains, B. subtilis K26 showed the highest activities in protease and xylanase and relatively high activity in cellulase. Accordingly, samples of sea cucumber and water were mixed in equal proportions, sterilized, and then fermented by inoculating them with B. subtilis K26. Following this, a higher amino acid content was observed between 1.5 and 7.5 hr, a lower residual solid content in this time, and a lesser fermentation odor. The saponin content in fermented sea cucumber powder extracted with butanol was measured to be 1.12 mg/g. The chondroitin sulfate content was evaluated to be 5.11 mg/g in raw sea cucumber. The total polyphenol content, flavonoid content, and antioxidant activities were 6.95 mg gallic acid equivalent/g, 3.69 mg quercetin equivalent/g, and 3.69 mg quercetin equivalent/g in raw sea cucumber, respectively. Moreover, the DNA damage protective effect of fermented sea cucumber extract was found to be concentration-dependent, with a very strong effect at very low concentrations. Overall, we suggest that sea cucumber fermented with B. subtilis K26 has a high potential as a food for inhibiting oxidation, enhancing immunity, and improving muscle function in the human body thanks to its high free amino acid content.

Anti-inflammatory effect in macrophages according to the mixing ratio of acemannan and aloesin (Acemannan과 aloesin의 혼합 비율에 따른 대식세포에서의 항염증 효과)

  • Hyo-Min Kim;Jeong-Hwan Kim;Dan-Hee Yoo;Se-Yeong Jeon;Hyun-Jin Kim;Seon-Gil Do;In-Chul Lee;Jung-Wook Kang
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.315-323
    • /
    • 2024
  • This study aims to confirm the anti-inflammatory activities of acemannan and aloesin, which have been studied for various efficacies at various mixed sample ratios. The mixed samples were mixed at a ratio of 1:1 (AA-1), 1:2 (AA-2), 1:3 (AA-3), 2:1 (AA-4), and 3:1 (AA-5). Seven samples were evaluated for their cytotoxic ability on macrophages, and the results showed that all cell viability was over 90% at a concentration of 100 ㎍/mL. First, due to the NO production inhibitory activity, a better inhibitory effect was achieved when using a mixed sample rather than a single material. Afterward, the activity of inhibiting the production of PGE2, TNF-α, and IL-6 was confirmed using a mixed sample. It was confirmed that AA-2 had the best inhibitory activity on producing PGE2, TNF-α, and IL-6 rather than AA-1, AA-3, AA-4, and AA-5. For this reason, experiments were conducted using AA-2 to determine the protein expression levels of iNOS and COX-2, which are inflammation-related proteins. It was confirmed that AA-2 inhibited iNOS and COX-2 protein expression by 25.01% and 27.27%, respectively, compared to the LPS-alone treatment group. In conclusion, the mixed sample of acemannan and aloesin is judged to have anti-inflammatory activity and can potentially to be used as a functional material.

Stem-leaf saponins from Panax notoginseng counteract aberrant autophagy and apoptosis in hippocampal neurons of mice with cognitive impairment induced by sleep deprivation

  • Cao, Yin;Yang, Yingbo;Wu, Hui;Lu, Yi;Wu, Shuang;Liu, Lulu;Wang, Changhong;Huang, Fei;Shi, Hailian;Zhang, Beibei;Wu, Xiaojun;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.442-452
    • /
    • 2020
  • Backgroud: Sleep deprivation (SD) impairs learning and memory by inhibiting hippocampal functioning at molecular and cellular levels. Abnormal autophagy and apoptosis are closely associated with neurodegeneration in the central nervous system. This study is aimed to explore the alleviative effect and the underlying molecular mechanism of stem-leaf saponins of Panax notoginseng (SLSP) on the abnormal neuronal autophagy and apoptosis in hippocampus of mice with impaired learning and memory induced by SD. Methods: Mouse spatial learning and memory were assessed by Morris water maze test. Neuronal morphological changes were observed by Nissl staining. Autophagosome formation was examined by transmission electron microscopy, immunofluorescent staining, acridine orange staining, and transient transfection of the tf-LC3 plasmid. Apoptotic event was analyzed by flow cytometry after PI/annexin V staining. The expression or activation of autophagy and apoptosis-related proteins were detected by Western blotting assay. Results: SLSP was shown to improve the spatial learning and memory of mice after SD for 48 h, accomanied with restrained excessive autophage and apoptosis, whereas enhanced activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway in hippocampal neurons. Meanwhile, it improved the aberrant autophagy and apoptosis induced by rapamycin and re-activated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling transduction in HT-22 cells, a hippocampal neuronal cell line. Conclusion: SLSP could alleviate cognitive impairment induced by SD, which was achieved probably through suppressing the abnormal autophagy and apoptosis of hippocampal neurons. The findings may contribute to the clinical application of SLSP in the prevention or therapy of neurological disorders associated with SD.

MiR-126-3p inhibits apoptosis and promotes proliferation by targeting phosphatidylinositol 3-kinase regulatory subunit 2 in porcine ovarian granulosa cells

  • Zhou, Xiaofeng;He, Yingting;Jiang, Yao;He, Bo;Deng, Xi;Zhang, Zhe;Yuan, Xiaolong;Li, Jiaqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.879-887
    • /
    • 2020
  • Objective: Numerous studies have indicated that the apoptosis and proliferation of granulosa cells (GCs) are closely related to the normal growth and development of follicles and ovaries. Previous evidence has suggested that miR-126-3p might get involved in the apoptosis and proliferation of GCs, and phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2) gene has been predicted as one target of miR-126-3p. However, the molecular regulation of miR-126-3p on PIK3R2 and the effects of PIK3R2 on porcine GCs apoptosis and proliferation remain virtually unexplored. Methods: In this study, using porcine GCs as a cellular model, luciferase report assay, mutation and deletion were applied to verify the targeting relationship between miR-126-3p and PIK3R2. Annexin-V/PI staining and 5-ethynyl-2'-deoxyuridine assay were applied to explore the effect of PIK3R2 on GCs apoptosis and proliferation, respectively. Real-time quantitative polymerase chain reaction and Western Blot were applied to explore the regulation of miR-126-3p on PIK3R2 expression. Results: We found that miR-126-3p targeted at PIK3R2 and inhibited its mRNA and protein expression. Knockdown of PIK3R2 significantly inhibited the apoptosis and promoted the proliferation of porcine GCs, and significantly down-regulated the mRNA expression of several key genes of PI3K pathway such as insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), pyruvate dehydrogenase kinase 1 (PDK1), and serine/threonine kinase 1 (AKT1). Conclusion: MiR-126-3p might target and inhibit the mRNA and protein expressions of PIK3R2, thereby inhibiting GC apoptosis and promoting GC proliferation by down-regulating several key genes of the PI3K pathway, IGF1R, INSR, PDK1, and AKT1. These findings would provide great insight into further exploring the molecular regulation of miR-126-3p and PIK3R2 on the functions of GCs during the folliculogenesis in female mammals.