• 제목/요약/키워드: Infrared light source

검색결과 114건 처리시간 0.023초

하지 (下脂) 조직내의 말초 혈관계 질환 진단을 위한 산소 측정장치의 개발에 관한 연구 (A study on the development of oxygen measurement device for diagnosis of peripheral vascular disease in lower extremity)

  • 임현수;이준규;박동철
    • 한국의학물리학회지:의학물리
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 1999
  • 혈액에서의 산소 포화도는 Hb와 HbO$_2$의 광학 스펙트라에서 흡수계수의 차이에 의해서 측정할 수 있다. 본 연구는 하지 조직에서 발생하는 말초혈관계 질환진단을 위하여 파장이 660nm 와 940nm의 LED를 이용하여 산소포화도를 측정하는 장치를 개발하였다. 산소측정장치는 광 탐촉자와 광 신호처리부, LED 구동회로, 컴퓨터와 인터페이스로 구성하고, 데이터의 수집과 분석을 위한 프로그램 을 개발하였다. 구현된 산소측정장치에 대한 임상적인 평가를 위하여 하지조직에서 운동 부하에 따른 실험을 하여 생체조직내 생리적변화에 따른 산소량의 변화를 측정하고, 기기의 성능을 평가하였다. 실험결과 생체조직내의 산소포화도는 광원과 검출기의 간격에 따라 측정이 가능함을 보여 주었다.

  • PDF

복사열 반사판의 설계를 위한 광학적 해석 및 실험기법 (Optical Analysis and Experimental Method for Design of Radiative Thermal Reflector)

  • 정해용;송태호;유승열
    • 설비공학논문집
    • /
    • 제20권8호
    • /
    • pp.563-569
    • /
    • 2008
  • Radiative, heating is suitable for outdoor heating system in windy and cold seasons. Optimal design of the reflector is very important to maximize heat transfer to a specific target area in the open space. The geometrical optical theory can be applied to analyze efficiency of the reflector. Commercial ray tracing computer programs are available only for limited geometries of the reflector. Alternatively, it may be designed and analyzed through an approximated simple lens theory. Two types of reflectors are analyzed using either of these methods. The key issue in this paper is to propose a new illumination experimental method for determination of the radiative efficiency. Optical light source and illuminometer are employed. The calculated efficiency of the reflector is compared with experimental one for checking the reliability. The relative errors between the experimental and analytical results are less than 5%, which proves the validity of this method. Based on these methodologies, a practical reflector and heating lamp unit is developed.

일렉트로어쿠스틱 기타용 광 픽업의 개발 (Development of Optical Pickup for ElectroAcoustic Guitar)

  • 신봉희;박영우
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.417-422
    • /
    • 2014
  • A guitar pickup is a transducer that converts string vibration to an electrical signal. The magnetic and piezo pickups are the most commonly used for the respective electric and electroacoustic guitars. The magnetic pickups are prone to magnetic interference between the steel strings and permanent magnets, while the piezo ones are not free from signal inference between the strings. Thus, this paper presents the development of an optical pickup for the electroacoustic guitar. The proposed optical pickup has the top-to-bottom structure. It uses two of Infrared (IR) Light Emitting Diode (LED) and one photodetector. The developed optical pickup is subjected to the evaluation with commonly used piezoelectric pickup. It becomes obvious that SNR with the optical pickup is increased by 45 percent in average, compared with the piezoelectric pickup. It can be concluded that the developed optical pickup has a potential to be applied to the acoustic guitar.

다중-노출 홀로그라피 방법을 이용한 광자 준결정 제작 및 밴드갭 특성 (Fabrication of photonic quasicrystals using multiple-exposure holographic method and bandgap properties)

  • 윤상돈;여종빈;이현용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.8-8
    • /
    • 2008
  • Two-dimensional photonic quasicrystal (PQCs) template patterns have been fabricated on a $1.1{\mu}m$-thick DMI-150 photoresist using a multiple-exposure holographic method. A 442-nm HeCd laser was utilized as a light source and the holographic exposure was carried out at a fixed angle of $\theta=6^{\circ}$. After the first holographic exposure, the sample was rotated to a proper angle and the second exposure was performed to the same manner. This exposure process was repeated n/2 times to obtain n-fold symmetric PQC patterns and then the sample was developed. The fabricated PQCs exhibited 8, 10 and 12-fold rotational symmetry and the diffraction patterns using a 632.8-nm HeNe laser were observed for n-rotation symmetry corresponding n-fold PQCs. The fabricated PQC template patterns were examined using scanning electron microscopy(SEM). Transmission spectra were measured fourier transform infrared(FTIR) spectrometer.

  • PDF

966nm 레이저 펄스를 이용한 바나듐 이산화물 박막 기반 전자 소자에서의 멤리스터 특성에 관한 연구 (Study on Memristive Characteristics in Electronic Devices Based on Vanadium Dioxide Thin Films Using 966nm Laser Pulses)

  • 김지훈;이용욱
    • 조명전기설비학회논문지
    • /
    • 제29권11호
    • /
    • pp.59-65
    • /
    • 2015
  • By harnessing the thermal hysteresis behavior of vanadium dioxide($VO_2$), we demonstrated multi-resistance states in a two-terminal electronic device based on a $VO_2$ thin film by using a 966nm infrared laser diode as an excitation light source for resistance modulation. Before stimulating the device using 966nm laser pulses, the thermal hysteresis behavior of the device resistance was measured by using a temperature chamber. After that, the $VO_2$ device was thermally biased at ${\sim}71.6^{\circ}C$ so that its temperature fell into the thermal hysteresis region of the device resistance. Six multi-states of the device resistance could be obtained in the fabricated $VO_2$ device by five successive laser pulses with equal 10ms duration and increasing power. Each resistance states were maintained while the temperature bias was applied. And, the resistance fluctuation level was within 2.2% of the stabilized resistance and decreased down to less than 0.9% of the stabilized resistance 5s after the illumination.

Low Cost Omnidirectional 2D Distance Sensor for Indoor Floor Mapping Applications

  • Kim, Joon Ha;Lee, Jun Ho
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.298-305
    • /
    • 2021
  • Modern distance sensing methods employ various measurement principles, including triangulation, time-of-flight, confocal, interferometric and frequency comb. Among them, the triangulation method, with a laser light source and an image sensor, is widely used in low-cost applications. We developed an omnidirectional two-dimensional (2D) distance sensor based on the triangulation principle for indoor floor mapping applications. The sensor has a range of 150-1500 mm with a relative resolution better than 4% over the range and 1% at 1 meter distance. It rotationally scans a compact one-dimensional (1D) distance sensor, composed of a near infrared (NIR) laser diode, a folding mirror, an imaging lens, and an image detector. We designed the sensor layout and configuration to satisfy the required measurement range and resolution, selecting easily available components in a special effort to reduce cost. We built a prototype and tested it with seven representative indoor wall specimens (white wallpaper, gray wallpaper, black wallpaper, furniture wood, black leather, brown leather, and white plastic) in a typical indoor illuminated condition, 200 lux, on a floor under ceiling mounted fluorescent lamps. We confirmed the proposed sensor provided reliable distance reading of all the specimens over the required measurement range (150-1500 mm) with a measurement resolution of 4% overall and 1% at 1 meter, regardless of illumination conditions.

바이오 물질 분석을 위한 금속 나노입자를 이용한 SERS 분석 연구동향 (A Review of SERS for Biomaterials Analysis Using Metal Nanoparticles)

  • 장의순
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.281-300
    • /
    • 2019
  • Surface enhanced Raman scattering (SERS) was first discovered in 1974 by an unexpected Raman signal increase from Pyridine adsorbed on rough Ag electrode surfaces by the M. Fleishmann group. M. Moskovits group suggested that this phenomenon could be caused by surface plasmon resonance (SPR), which is a collective oscillation of free electrons at the surface of metal nanostructures by an external light source. After about 40 years, the SERS study has attracted great attention as a biomolecule analysis technology, and more than 2500 new papers and 500 review papers related to SERS topic have been published each year in recently. The advantages of biomaterials analysis using SERS are as follows; ① Molecular level analysis is possible based on unique fingerprint information of biomolecule, ② There is no photo-bleaching effect of the Raman reporters, allowing long-term monitoring of biomaterials compared to fluorescence microscopy, ③ SERS peak bandwidth is approximately 10 to 100 times narrower than fluorescence emission from organic phosphor or quantum dot, resulting in higher analysis accuracy, ④ Single excitation wavelength allows analysis of various biomaterials, ⑤ By utilizing near-infrared (NIR) SERS-activated nanostructures and NIR excitation lasers, auto-fluorescence noise in the visible wavelength range can be avoided from in vivo experiment and light damage in living cells can be minimized compared to visible lasers, ⑥ The weak Raman signal of the water molecule makes it easy to analyze biomaterials in aqueous solutions. For this reason, SERS is attracting attention as a next-generation non-invasive medical diagnostic device as well as substance analysis. In this review, the principles of SERS and various biomaterial analysis principles using SERS analysis will be introduced through recent research papers.

Multi-wavelength Study of Blazars Using Variability as a Tool

  • Baliyan, Kiran S.;Kaur, Navpreet;Chandra, Sunil;Sameer, Sameer;Ganesh, Shashikiran
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권3호
    • /
    • pp.177-183
    • /
    • 2016
  • Active galactic nuclei (AGN) are too compact to be resolved by any existing optical telescope facility, making it difficult to understand their structure and the emission processes responsible for their huge energy output. However, variability, one of their characteristic properties, provides a tool to probe the inner regions of AGN. Blazars are the best candidates for such a study, and hence a considerable amount of effort is being made to investigate variability in these sources across the electromagnetic spectrum. Here, using the Mt. Abu infrared observatory (MIRO) blazar monitoring program, we present intra-night, inter-night, and long term aspects of the variability in S5 0716+71, 3C66A, and OJ 287. These stars show significant variability on short (a few tens of mins, to a few hours, to a few days) to long term (months to years) timescales. Based on the light travel time argument, the shortest variability timescales (micro-variability) provide upper limits to the size of the emission region. While S5 0716 shows a very high duty cycle of variability (> 80 %), 3C66A shows a much lower intra day variability (IDV) duty cycle (< 20 %). All three show rapid variations within 2.5 to 3.5 hr, which, perhaps, are generated near the vicinity of black holes. Assuming this, estimates of the masses of the black holes are made at ~109, 8×108, and 2.7×109 M for S5 0716+71, 3C66A, and OJ 287, respectively. Multi-wavelength light-curves for the blazar PKS 1510-089 are discussed to infer the emission processes responsible for the recent flaring episodes in this source.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

분광학적 검출기가 내장된 휴대용 적정기: 스펙트레이터 (Portable titrator equipped spectroscopic detectors; Spectrator)

  • 신지원;채교윤;김예진;김상호;채윤수;채원석
    • 분석과학
    • /
    • 제34권3호
    • /
    • pp.128-133
    • /
    • 2021
  • 적정 화학반응에는 화학종의 전위차 변화뿐만 아니라 지시약의 색깔 변화도 포함된다. 전위차 적정에서는 종말점에서 전위의 급격한 변화를 측정하여 적정 곡선을 얻는다. 산-염기 적정은 일반적으로 지시약의 색 변화를 관찰하여 종말점을 결정함으로써 수행된다. 전위차를 측정하여 종말점을 결정하는 방법은 잘 확립 되어 상용화되어 있지만 색의 변화를 관찰하여 종말점을 얻는 장치는 많지 않은 실정이다. 적외선 광원과 감지기로 적정액 방울을 계수하고, 백색광원과 광 검출기로 종말점의 변색을 감지하여 아날로그-디지털 변환기인 아두이노 (Arduino)가 적용된 간단하고 정밀한 스펙트럼 종말점 검출 기구를 제작하였다. Spectrator는 지시약으로 티몰 블루를 사용한 산-염기 적정에서 재현성 측면에서 우수한 결과를 보였다. Spectrator 제작 과정과 이를 사용한 실험결과를 공유한다.