• 제목/요약/키워드: Infrared Microscope

검색결과 235건 처리시간 0.023초

Instrumental Analysis of the Human Hair Damaged by Bleaching Treatments - Focused on ATR FT-IRM -

  • Ha, Byung-Jo
    • 패션비즈니스
    • /
    • 제12권6호
    • /
    • pp.23-33
    • /
    • 2008
  • The physico-chemical characteristics by bleaching treatments were assessed by several instrumental analyses such as surface morphology, chemical structural change, color change as well as tensile strength. The change of morphological characteristic was observed through scanning electron microscope(SEM). The observation of the fine structure on hair surface by SEM showed the bleached hair had much damaged to hair cuticle, and some of cuticle surface were worn away. To investigate the chemical structural changes in hair keratin, the cross-sections of hair samples were directly analysed using Fourier transform infrared microspectroscopy(FT-IRM). The results showed the cysteic acid S=O band intensity was distinctively increased by performing the bleaching treatment. The cleavage of cystine was appeared to proceed primarily through the sulfur-sulfur (-S-S-) fission whereby cysteic acid was formed as a principal oxidation products. The distribution of amide I band in hair keratin was determined by attenuated total reflectance(ATR) FT-IR mapping image. The results showed that the outer side of hair cortex was more damaged than the inner side of the hair cortex. Also, during chemical bleaching of the hair with alkaline peroxide, the hair was turned to reddish yellow due to the oxidative degradation of eumelanin. This means the eumelanin is more unstable than pheomelanin in chemical oxidation. With bleaching, the tensile strength was also reduced as a results of the chemical oxidation.

Facile Fabrication and Characterization of In2O3 Nanorods on Carbon Fibers

  • Nagaraju, Goli;Ko, Yeong Hwan;Yu, Jae Su
    • Applied Science and Convergence Technology
    • /
    • 제23권4호
    • /
    • pp.187-191
    • /
    • 2014
  • Indium oxide ($In_2O_3$) nanorods (NRs) which can be expected to increase the device performance in various electronic and electrochemical applications were prepared on carbon fibers via an electrochemical deposition (ED) method. During the ED, the indium hydroxide ($In(OH)_3$) NRs were well grown and firmly attached onto the carbon fibers. After that, they were changed into $In_2O_3$ by dehydration through a thermal annealing. The morphological and structural properties were investigated using field-emission scanning electron microscope images. The crystallinity of as-prepared sample was evaluated by X-ray diffraction. The Fourier transform infrared results confirm that the functional groups are present in the $In_2O_3$ NRs. This facile process of metal oxide nanostructures on carbon fiber can be utilized for flexible electronic and energy related applications.

Non-swelling type의 Hydrophilic polyurethane 합성 및 응용에 관한 연구 (Synthesis and Application for Hydrophilic Polyurethane of Non-swelling Type)

  • 양정한;전재우;염정현;김덕한;오경석;윤남식
    • 한국염색가공학회지
    • /
    • 제23권2호
    • /
    • pp.118-130
    • /
    • 2011
  • In this study, hydrophilic polyurethane (PU) was synthesized by one shot process to get good non-swelling effect and to keep high breathability using reactive silicone oil of mono terminal and bi-terminal types. We also blended non reactive silicone oil with pure hydrophilic PU to compare non-swelling effect and breathability with hydrophilic PU synthesized by the two types of reactive silicone oils. The hydrophilic films were analyzed by nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photo electron (XPS) spectroscopy, energy dispersive spectrometry (EDS), breathability, waterproofness, tensile strength, contact angle and swelling effect. The results showed that the film made by hydrophilic PU which was synthesized with mono terminal type silicone oil provided good non-swelling effect and acceptable moisture permeability due to the modified surface properties.

펨토초 레이저를 이용한 플렉시블 ITO 패터닝 연구 (Femtosecond laser pattering of ITO film on flexible substrate)

  • 손익부;김영섭;노영철
    • 한국레이저가공학회지
    • /
    • 제13권1호
    • /
    • pp.11-15
    • /
    • 2010
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency in the visible and near IR (infrared) wavelengths. Thus, it is widely used as a transparent electrode for the fabrication of liquid crystal displays (LCDs) and organic light emitting diode displays (OLRDs), photovoltaic devices, and other optical applications. Lasers have been used for removing coating on polymer substrate for flexible display and electronic industry. In selective removal of ITO layer, laser wavelength, pulse energy, scan speed, and the repetition rate of pulses determine conditions, which are efficient for removal of ITO coating without affecting properties of the polymer substrate. ITO coating removal with a laser is more environmentally friendly than other conventional etching methods. In this paper, pattering of ITO film from polymer substrates is described. The Yb:KGW femtosecond laser processing system with a pulse duration of 250fs, a wavelength of 1030nm and a repetition rate of 100kHz was used for removing ITO coating in air. We can remove the ITO coating using a scanner system with various pulse energies and scan speeds. We observed that the amount of debris is minimal through an optical and a confocal microscope, and femtosecond laser pulses with 1030nm wavelength are effective to remove ITO coating without the polymer substrate ablation.

  • PDF

LPCVD로 성장된 다결정 3C-SiC 박막의 물리적 특성 (Physical Characteristics of Polycrystalline 3C-SiC Thin Films Grown by LPCVD)

  • 정귀상;김강산
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.732-736
    • /
    • 2006
  • This paper describes the physical characterizations of polycrystalline 3C-SiC thin films heteroepitaxially grown on Si wafers with thermal oxide, In this work, the 3C-SiC film was deposited by LPCVD (low pressure chemical vapor deposition) method using single precursor 1, 3-disilabutane $(DSB:\;H_3Si-CH_2-SiH_2-CH_3)\;at\;850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_2$ were measured by SEM (scanning electron microscope). Finally, residual strain was investigated by Raman scattering and a peak of the energy level was less than other type SiC films, From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS (Micro-Electro-Mechanical-Systems) applications.

극한환경 MEMS용 2 inch 3C-SiC 기판의 직접접합 특성 (Direct Bonding Characteristics of 2 inch 3C-SiC Wafers for MEMS in Hash Environments)

  • 정연식;류지구;김규현;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.387-390
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS(micro electro mechanical system) fields because of its application possibility in harsh environments. This paper presents pre-bonding techniques with variation of HF pre-treatment conditions for 2 inch SiC wafer direct bonding using PECVD(plasma enhanced chemical vapor deposition) oxide. The PECVD oxide was characterized by XPS(X-ray photoelectron spectrometer) and AFM(atomic force microscopy). The characteristics of the bonded sample were measured under different bonding conditions of HF concentration and an applied pressure. The bonding strength was evaluated by the tensile strength method. The bonded interface was analyzed by using IR camera and SEM(scanning electron microscope). Components existed in the interlayer were analyzed by using FT-IR(fourier transform infrared spectroscopy). The bonding strength was varied with HF pre-treatment conditions before the pre-bonding in the range of $5.3 kgf/cm^2$ to $15.5 kgf/cm^2$

  • PDF

$BaTiO_3$계 세라믹의 미세구조와 열전센서에 관한 연구 (A Study on the Microstructure and Thermal Sensor Devices of the Thin Films in the $BaTiO_3$ Systems)

  • 송민종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.135-139
    • /
    • 2005
  • Thin films of $BaTiO_3$ system were prepared by radio frequency(rf)/dc magnetron sputtering method. We have investigated crystal structure, surface morphology and PTCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperatures. Second heat treatments of the specimen were performed in the temperature range of 400 to $1350^{\circ}C$. X-ray diffraction patterns of $BaTiO_3$ thin films show that the specimen heat treated below $600^{\circ}C$ is an amorphous phase and the one heat treated above $1100^{\circ}C$ forms a poly-crystallization. In the specimen heat-treated at $1300^{\circ}C$, a lattice constant ratio (c/a) was 1.188. Scanning electron microscope(SEM) image of $BaTiO_3$ thin films of the specimen heat treated in between 900 and $1100^{\circ}C}$ shows a grain growth. At $1100^{\circ}C$, the specimen stops grain-growing and becomes a poly-crystallization.

  • PDF

HMDS 단일 전구체를 이용한 다결정 3C-SiC 박막 성장 (Growth of Polycrystalline 3C-SiC Thin Films using HMDS Single Precursor)

  • 정귀상;김강산;한기봉
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.156-161
    • /
    • 2007
  • This paper describes the characteristics of polycrystalline ${\beta}$ or 3C (cubic)-SiC (silicon carbide) thin films heteroepitaxailly grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC film was deposited by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane: $Si_{2}(CH_{3}_{6})$ single precursor. The deposition was performed under various conditions to determine the optimized growth conditions. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_{2}$ were measured by SEM (scanning electron microscope). Finally, depth profiling was invesigated by GDS (glow discharge spectrometer) for component ratios analysis of Si and C according to the grown 3C-SiC film thickness. From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therfore, the poly 3C-SiC thin film is suitable for extreme environment, Bio and RF MEMS applications in conjunction with Si micromaching.

Influence of Amorphous Polymer Nanoparticles on the Crystallization Behavior of Poly(vinyl alcohol) Nanocomposites

  • Lee, Kyung-Jin;Lee, Ji-Hye;Hong, Jin-Yong;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.476-482
    • /
    • 2009
  • The crystallization behavior of poly(vinyl alcohol) (PVA) in the presence and absence of polypyrrole nanoparticles (PPy NPs) was investigated in terms of the heterogeneous nucleation effect of PPy NPs using FTIR, X-ray diffraction, differential scanning calorimeter and polarized optical microscope analysis. PPy NPs were prepared by dispersion polymerization method stabilized by PVA in aqueous solution. A polymer nanocomposite with uniform dispersity could be readily obtained due to the enhanced compatibility between the filler and matrix. Compared with the PPy NP-absent PVA, the PPy NP/PVA nanocomposite exhibited an enhanced degree of crystallinity. The degree of crystallinity increased up to 17% at the PPy NP concentration of 1 wt%, compared to the pristine PVA. The PPy NP acted as an effective nucleating agent during the crystallization process, thereby enhancing the degree and rate of crystallization. The kinetics study of the crystallization also revealed the decreased value of the Avrami coefficient in the case of the PPy NP/PVA nanocomposite.

Effects of Drying Temperature on the Optical Properties of Solution Derived (Pb, La)$TiO_3$ Thin Films

  • Yoon, Dae-Sung;Kim, Sung-Wuk;Koo, Jun-Mo;Jiang, Zhong-Tao
    • The Korean Journal of Ceramics
    • /
    • 제1권4호
    • /
    • pp.191-196
    • /
    • 1995
  • Using sol-gel processing method, thin films of lathanum modified lead titanate(PLT) on Corning 7059 glass were prepared. A differential thermal analysis (DTA/TG) curve of gel powder and infrared spectra (FT-IR) of the films were measured to estimate residual organices in them. The heat-treated films were characterized by X-ray diffraction(XRD). Microstructures of the films were observed by a scanning electron microscope (SEM). Optical properties of the films were determined by a UV-VIS spectrophotometer. The waveguiding properties and optical attenuation were measured with the end coupling method and the cut back method. Effects of the drying conditions on the transmittance and the propagation loss of the films were investigated. Experimemtal results showed that the content of residual organics in the film decreased as the drying temperature of the film increased. As the La content of the film increased, the grain size decreased and the transmittance increased. The transmittances of the films increased with the increasing of the drying temperature. The propagation losses in the film decreased as the drying temperature increased.

  • PDF