• Title/Summary/Keyword: Infra Red

Search Result 485, Processing Time 0.03 seconds

The Effects of Urban Forest on Summer Air Temperature in Seoul, Korea (도시림의 여름 대기온도 저감효과 - 서울시를 대상으로 -)

  • 조용현;신수영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.28-36
    • /
    • 2002
  • The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the Oafnc facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperahne, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field swey of summer air temperature be Performed for the vadidation of the models. The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the traffic facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperature, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field survey of summer air temperature be Performed for the vadidation of the models.

A Study on the Heat Flow Analysis of Infra-Red Signature Suppression System for Naval Ship (함정 적외선 신호저감 장치의 열 유동해석 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.740-746
    • /
    • 2017
  • Infrared signatures emitted from hot exhaust gases generated by the internal combustion engine and generator of naval ships and from the metal surfaces of the funnel have become the targets of infrared homing missiles, which is the main cause of a reduced survivability of naval ships. The infrared signatures from the exhaust gas and the metal surface of a funnel can be reduced by installing an infrared signature suppression (IRSS) system on a ship. The IRSS system consists of three parts: an eductor that generates turbulent flow of the exhaust gas, a mixing tube that mixes the exhaust gas with ambient air, and a diffuser that forms an air film using the pressure difference between the inside and outside air. As a basic study to develop an IRSS system using domestic technology, this study analyzed the model test conditions of an IRSS system developed by an overseas engineering company and installed on a domestic naval ship, and a numerical heat-flow analysis was conducted based on the results of the aforementioned analysis. Numerical heat-flow analysis was performed using a commercial numerical-analysis application, and various turbulence models were considered. As a result, the temperature and velocity of the exhaust gas at the educator inlet and diffuser outlet and that of the metal surface of the diffuser were measured, and found to agree well with the measurement results of the model test.

A Study on the Diffuser Design of Exhaust Pipes for the Infra-Red Signature Reduction of Naval Ship (함정 적외선 신호 감소를 위한 폐기관의 디퓨져 설계에 관한 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.793-798
    • /
    • 2017
  • In modern naval ships, an infrared signature suppression (IRSS) system is used to reduce the metal surface temperature of the heated exhaust pipe and high-temperature exhaust gases generated from the propulsion system. Generally, the IRSS systems used in Korean naval ships consist of an eductor, mixing tube, and diffuser. The diffuser reduces the temperature of the metal surface by creating an air film due to a pressure difference between the internal gas and the external air. In this study, design variables were selected by analyzing the shapes of a diffuser designed by an advanced overseas engineering company. The characteristics of the design variables that affect the performance of the IRSS were investigated through the Taguchi experimental method. A heat flow analysis technique for IRSS systems established in previous studies was used analyze the performance of the diffuser. The performance evaluation was based on the area-averaged value of the metal surface temperature and exhaust gas temperature at the outlet of the diffuser, which are directly related to the intensity of the infrared signature. The results show that the temperature of the exhaust gas was significantly affected by changes in the diameter of the diffuser outlet, and the temperature of the diffuser's metal surface was significantly affected by changes in the number of diffuser rings.

Evaluation of SWIR bands utilization of Worldview-3 satellite imagery for mineral detection (광물탐지를 위한 Worldview-3 위성영상의 SWIR 밴드 활용성 평가)

  • Kim, Sungbo;Park, Honglyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.203-209
    • /
    • 2021
  • With the recent development of satellite sensor technology, high-spatial-resolution imagery of various spectral wavelength bands have become possible. Worldview-3 satellite sensor provides panchromatic images with high-spatial-resolution and VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) bands with low-spatial-resolution, so it can be used in various fields such as defense, environment, and surveying. In this study, mineral detection was performed using Worldview-3 satellite imagery. In order to effectively utilize the VNIR and SWIR bands of the Worldview-3 satellite image, the sharpening technique was applied to the spatial resolution of the panchromatic image. To confirm the utility of SWIR bands for mineral detection, mineral detection using only VNIR bands was performed and comparatively evaluated. As the mineral detection technique, SAM (Spectral Angle Mapper), a representative similarity technique, was applied, and the pixels detected as minerals were selected by applying an empirical threshold to the analysis result. Quantitative evaluation was performed using reference data on the results of similarity analysis to evaluate the accuracy of mineral detection. As a result of the accuracy evaluation, the detection rate and false detection rate of mineral detecting using SWIR bands were calculated to be 0.882 and 0.011, respectively, and the results using only VNIR bands were 0.891 and 0.037, respectively. It was found that the detection rate when the SWIR bands were additionally used was lower than that when only the VNIR bands were used. However, it was found that the false detection rate was significantly reduced, and through this, it was possible to confirm the applicability of SWIR bands in mineral detection.

Establishing the Black Hole Mass Estimator of Active Galactic Nuclei with Hydrogen Brackett Lines

  • Kim, Do-Hyeong;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2011
  • Red dusty Active Galactic Nuclei (AGNs) are suspected to mid-stage between ULIRG and AGN phase. As well as, red AGNs are suspected that they have more than 50% of whole AGN population. In order to understand the character of red AGNs, Black Hole (BH) mass of red AGN is a key property and can not measured by existing method such as reverberation mapping and single epoch method. Thus we still don't know their character and properties in clearly. To estimate properties of red AGNs without the effect of dust-obscuration, we have obtained Near InfraRed (NIR) spectra of 31 reverberation mapped AGNs and 49 Palomar-Green(PG) Quasi-Stellar Object (QSO) by using the infrared camera (IRC) for AKARI with unique wavelength range $2.5-5.0{\mu}m$. From this spectra, we measured the FWHM and luminosity of brackett ${\alpha}$ and ${\beta}$ at 4.0, 2.6 micron meter for deriving new BH mass estimators based on the properties of Brackett line emission.

  • PDF

A Red Ginseng Internal Measurement System Using Back-Projection (Back-Projection을 활용한 홍삼 내부 측정 시스템)

  • Park, Jaeyoung;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.377-382
    • /
    • 2018
  • This study deals with internal state and tissue density analysis methods for red ginseng grade determination. For internal measurement of red ginseng, there have been various studies on nondestructive testing methods since the 1990s, It was difficult to grasp the most important inner hole and inside whites in the grading. So in this study, we developed a closed capturing device for infra-red illumination environment, and developed an internal measurement system that can detect the presence and diameter of inner hole and inside whites. Made devices consisted of infrared lights with a high transmission rate of red ginseng in 920 nanometer wave band, a infra-red camera and a Y axis actuator with a red ginseng automatically controlled focus on the camera. The proposed algorithm performs an auto-focus system on the Y-axis actuator to automatically adjust the sharp focus of the object according to the size and thickness. Then red ginseng is rotated $360^{\circ}$ at $1^{\circ}$ intervals and 360 total images are acquired, and reconstructed as a sinogram through Radon transform and Back-projection algorithm was performed to acquire internal images of red ginseng. As a result of the algorithm, it was possible to acquire internal cross-sectional image regardless of the thickness and shape of red ginseng. In the future, if more than 10,000 different shapes and sizes of red ginseng internal cross-sectional image are acquired and the classification criterion is applied, it can be used as a reliable automated ginseng grade automatic measurement method.

Establishing New Black Hole Mass Estimators of Active Galactic Nuclei with Hydrogen Brackett Lines

  • Kim, Do-Hyeong;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2012
  • Red Active Galactic Nuclei (AGNs) are suspected to intermediate stage between ULIRG and AGN phase. As well as, red AGNs are suspected to have more than 50% of whole AGN population. For understanding the characteristics of red AGN, Black Hole (BH) mass is a key property and can not be estimated by existed method such as reverberation mapping and single epoch method using 5100A continuum and Balmer lines. Thus we still don't know their characteristics and properties in clearly. To estimate properties of red AGNs without the effect of dust extinction, we obtained Near InfraRed (NIR) spectra of 31 reverberation mapped AGNs and 49 Palomar-Green(PG) Quasi-Stellar Objects (QSOs) by using the infrared camera (IRC) of AKARI space telescope with unique wavelength range 2.5-5.0 ${\mu}m$. Upon this spectra, we measured the FWHM and luminosity of Brackett ${\alpha}$ and ${\beta}$ lines for deriving new BH mass estimators of AGNs.

  • PDF

Estimating Black Hole Mass in Active Galactic Nuclei with Hydrogen Brackett lines

  • Kim, Do-Hyeong;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.32.2-32.2
    • /
    • 2010
  • Red dusty Active Galactic Nuclei (AGNs) are suspected to mid-stage between ULIRG and AGN phase. As well as, they are suspected that they have more than 50% of AGN population. To understand character of red AGN, Black Hole (BH) mass of red AGN is a key property and haven't measured by existing method such as reverberation mapping and single epoch method. So we still don't know their character and properties clearly. To estimate properties of red AGNs escape from effect of dust-obscuration, we have obtained Near InfraRed (NIR) spectra of 31 reverberation mapped AGNs and 49 Palomar-Green(PG) Quasi-Stellar Object (QSO) using the infrared camera (IRC) for AKARI with unique wavelength range 2.5-$5.0{\mu}m$. From this spectra, we measured the FWHM and luminosity of brackett ${\alpha}$, ${\beta}$ at 4.0, 2.6 micron meter for deriving new BH mass estimators based on the properties of Brackett line emission.

  • PDF

FLAME DETECTOR의 응답특성연구

  • Lee, Bok-Yeong
    • Fire Protection Technology
    • /
    • s.18
    • /
    • pp.5-16
    • /
    • 1995
  • The capacity commonly required sensors includes capability of quickly and properly catching the conditions of a fire and discriminating other factors such as noise, interference, etc. IR flame detector which react to the infra-red rays emitted from the flame. This study is aimed to know the characteristic repond to the specified fire plate. Experiment is acted by manufacture's technical data that is explained relation of detective range and sensitivity.

  • PDF