• 제목/요약/키워드: Information retrieval query

검색결과 628건 처리시간 0.023초

B2V-Tree: 무선 데이타 스트림에서 부분 부합 질의를 위한 색인 기법 (B2V-Tree: An Indexing Scheme for Partial Match Queries on Wireless Data Streams)

  • 정연돈;이지연
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권3호
    • /
    • pp.285-296
    • /
    • 2005
  • 이동 분산 환경에서는 무선 데이타 방송 기법을 통하여 서버의 데이타 레코드들을 이동 사용자들에게 전달하는 방식이 많이 사용된다. 그리고, 무선 방송 스트림에서 데이타를 에너지 효율적으로 접근하기 위해서는 색인 기법이 필요하다. 하지만, 기존의 색인 기법들은 데이타 레코드의 키 값을 이용한 트리 형태의 색인 구조를 사용하고 있다. 따라서 부분 부합 질의 등과 같은 내용 기반 검색 질의를 지원할 수 없었다. 본 논문에서는 무선 방송으로 이동 사용자들에게 전달되는 데이타 스트림에서 내용 기반 검색인 부분 부합 질의를 지원하기 위해 B2V-Tree라고 불리는 색인 기법을 제안한다. 본 논문에서 제안하는 B2V-Tree는 데이타 레코드들의 애트리뷰트 값을 다중 애트리뷰트 해싱을 통해 비트 벡터로 생성한 다음, 이들을 색인 트리로 구성하는 색인 기법이다.

유효시간 데이터 스트림에서의 스카이라인 질의 알고리즘 (Efficient Skyline Computation on Time-Interval Data Streams)

  • 박남훈;장중혁
    • 한국산학기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.370-381
    • /
    • 2012
  • 다기준 의사결정 연구는 평가기준이 상이한 다수의 선호도로부터 최선의 대안을 찾는 방법으로 실시간 재난 탐지, 센서를 이용한 서식 모니터링 등의 응용환경에서 활용되어 왔다. 최근 유효시간 데이터 스트림 응용환경에서 각 객체들이 개개의 유효시간을 가지므로, 기존의 슬라이딩 윈도우보다 다기준 의사결정 방법, 즉 스카이라인 질의 수행에 더 많은 연산이 필요한다. 본 연구에서는 유효시간 데이터 스트림에서 스카이라인 질의를 수행하는 TI-Sky 알고리즘을 제시한다. 실시간 환경에서 새로운 객체가 생성되고 소멸되기까지 유효한 객체들을 관리하고 스카이라인 질의를 수행하기 위해 파티션단위의 시간 지배관계를 제시한다. 객체의 생성과 유효시간, 지배관계에 따라 시간지배관계를 갱신하며 다양한 방법으로 사멸객체를 제거하여 수행성능을 향상 시켰다. 실험을 통해 TI-Sky가 다양한 데이터 상에서 기존 연구보다 뛰어난 성능으로 스카이라인 질의를 수행하는 것을 증명하였다.

합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로 (Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image)

  • 서이안;신경식
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.1-19
    • /
    • 2018
  • 최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.

웹 통합문서의 효율적 생성과 검색을 위한 자동링크지원 시스템의 설계 및 구축 (Design and Implementation of Automatic Linking Support System for Efficient Generating and Retrieving Integrated Documents Based on Web)

  • 이원중;정은재;주수종;이승용
    • 정보처리학회논문지A
    • /
    • 제10A권2호
    • /
    • pp.93-100
    • /
    • 2003
  • 분산 컴퓨팅과 웹 서비스 기술의 발달과 함께, 급증하는 인터넷 사용자는 웹 기반의 맞춤형 정보를 편리하게 작성하고 제공받을 수 있는 서비스들을 요구하고 있다. 이를 위해, 본 논문에서는 맞춤형 정보로서 웹 기반의 통합문서를 생성하고, 사용자 요구에 따라 다양한 검색을 지원할 수 있는 자동링크지원 시스템(ALSS : Automatic Linking Support System)을 구축하고자 한다. 본 시스템의 구성은 클라이언트/서버 환경을 기반으로, 서버는 어휘분석, 질의처리 및 통합문서생성 기능들을 제공하는 자동링크엔진과 사전, 이미지 컨텐츠 및 URLs로 이루어진 데이터베이스를 지원하도록 구축하였다. 클라이언트 측은 서버 측의 자동링크엔진과 데이터베이스를 접근하여 웹 기반의 통합문서를 생성하는 웹 에디터와 검색 서비스를 지원하는 웹 도우미로 구축하였다. 웹 에디터나 웹 도우미 프로그램은 클라이언트 측에 별도의 설치 없이 서버로부터 다운로딩하여 실행할 수 있으며, 서버의 실행기능들의 일부를 글라이언트 측에 분산시키므로써 서버의 부하를 감소시켰다. 본 시스템의 구현으로서, 사용자 인터페이스는 JDK 1.3 기반의 SWING을 이용하고, 클라이언트와 서버간의 연동을 위한 자바 RMI 기법을 적용하였으며, SQL Server 7.0을 사용하여 데이터베이스를 구축하였다. 마지막으로 웹 에디터와 웹 도우미에 의해 자동링크엔진과 데이터베이스를 접근하는 과정과 그들의 실행결과를 보였다.

키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법 (A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model)

  • 조원진;노상규;윤지영;박진수
    • Asia pacific journal of information systems
    • /
    • 제21권1호
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

클라우드 환경에서 검색 효율성 개선과 프라이버시를 보장하는 유사 중복 검출 기법 (Efficient and Privacy-Preserving Near-Duplicate Detection in Cloud Computing)

  • 한창희;신형준;허준범
    • 정보과학회 논문지
    • /
    • 제44권10호
    • /
    • pp.1112-1123
    • /
    • 2017
  • 최근 다수의 콘텐츠 서비스 제공자가 제공하는 콘텐츠 중심 서비스가 클라우드로 이전함과 동시에 온라인 상의 유사 중복 콘텐츠가 급격히 증가함에 따라, 불필요한 과잉 검색 결과를 초래하는 등 클라우드 기반 데이터 검색 서비스의 품질이 저하하고 있다. 또한 데이터 보호법 등에 의거, 각 서비스 제공자는 서로 다른 비밀키를 이용하여 콘텐츠를 암호화하기 때문에 데이터 검색이 어렵다. 따라서, 검색 프라이버시를 보장하면서 유사 중복 데이터 검색의 정확도까지 보장하는 서비스의 구현은 기술적으로 어려운 실정이다. 본 연구에서는, 클라우드 환경에서 데이터 복호 없이 불필요한 검색 결과를 제거함으로써 검색서비스 품질을 제고하며, 동시에 효율성까지 개선된 유사 중복 검출 기법을 제안한다. 제안 기법은 검색 프라이버시와 콘텐츠 기밀성을 보장한다. 또한, 사용자 측면의 연산 비용 및 통신 절감을 제공하며, 빠른 검색 평가기능을 제공함으로써 유사 중복 검출 결과의 신뢰성을 보장한다. 실제 데이터를 통한 실험을 통해, 제안 기법은 기존 연구 대비 약 70.6%로 성능이 개선됨을 보인다.

고차원 멀티미디어 데이터 검색을 위한 벡터 근사 비트맵 색인 방법 (Vector Approximation Bitmap Indexing Method for High Dimensional Multimedia Database)

  • 박주현;손대온;낭종호;주복규
    • 정보처리학회논문지D
    • /
    • 제13D권4호
    • /
    • pp.455-462
    • /
    • 2006
  • 고차원 데이터 공간에서의 효과적인 검색을 위해 최근 VA-file[1], LPC-file[2] 등과 같이 벡터 근사에 기반을 둔 필터링 색인 방법들이 연구되었다. 필터링 색인 방법은 벡터를 근사한 작은 크기의 색인 정보를 사용하여 근사 거리를 계산하고, 이를 사용하여 질의 벡터와 유사하지 않은 대부분의 벡터들을 빠른 시간 안에 검색 대상에서 제외한다. 즉, 실제 벡터 대신 근사 벡터를 읽어 디스크 I/O 시간을 줄여 전체 검색 속도를 향상시키는 것이다. 하지만 VA-file 이나 LPC-file은 근사 거리를 구하는 방법이 순차 검색과 같거나 복잡하기 때문에 검색 속도 향상 효과가 그리 크지 않다는 문제점을 가지고 있다. 본 논문은 이러한 근사 거리 계산 시간을 줄이기 위하여 새로운 비트맵 색인 구조를 제안한다. 근사 거리 계산속도의 향상을 위하여, 각 객체의 값을 특성 벡터 공간상의 위치를 나타내는 비트 패턴으로 저장하고, 객체 사이의 거리를 구하는 연산은 실제 벡터 값의 연산보다 속도가 훨씬 빠른 XOR 비트 연산으로 대체한다. 실험에 의하면 본 논문이 제안하는 방법은 기존 벡터 근사 접근 방법들과 비교하여 데이터 읽기시간은 더 크지만, 계산 시간을 크게 줄임으로써 전체 검색 속도는 순차 검색의 약 4배, 기존의 방법들보다는 최대 2배의 성능이 향상되었다. 결과적으로, 데이터베이스의 속도가 충분히 빠른 경우 기존의 벡터 근사 접근법의 필터링을 위한 계산 시간을 줄임으로써 더욱 검색 성능을 향상 시킬 수 있음을 확인할 수 있다.

SOSiM: 형태 특징 기술자를 사용한 형태 기반 객체 유사성 매칭 (SOSiM: Shape-based Object Similarity Matching using Shape Feature Descriptors)

  • 노충호;이석룡;정진완;김상희;김덕환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권2호
    • /
    • pp.73-83
    • /
    • 2009
  • 본 논문에서는 영상 내의 객체의 형태(shape)에 기반한 객체 유사성 매칭(matching) 방법을 제안한다. 제안한 방법에서는 객체의 윤곽선(edge)에서 점들(edge points)을 추출하고, 추출된 점들의 위치 관계를 나타내기 위하여 각 점을 기준으로 로그 원형 히스토그램(log polar histogram)을 생성하였다. 객체의 윤곽을 따라가며 각 점에 대한 원형 히스토그램을 순차적으로 비교함으로써 객체간의 매칭이 이루어지며, 데이타베이스로부터 유사한 객체를 검색하기 위하여 사용한 매칭 방식은 널리 알려진 k-NN(nearest neighbor) 질의 방식을 사용하였다. 제안한 방법을 검증하기 위하여 기존의 형태 문맥 기법(Shape Context method)과 제안한 방법을 비교하였으며, 객체 유사성 매칭 실험에서 k=5일 때 기존 방법의 정확도가 0.37, 제안한 방법이 0.75-0.90이며, k=10일 때 기존 방법이 0.31, 제안한 방법이 0.61-0.80로서 기존의 방법에 비해 정확한 매칭 결과를 보여 주었다. 또한 영상의 회전 변형 실험에서 기존 방법의 정확도가 0.30, 제안한 방법이 0.69로서 기존 방법보다 회전 변형에 강인한(robust) 특성을 가짐을 관찰할 수 있었다.