• 제목/요약/키워드: Information platform

검색결과 5,824건 처리시간 0.031초

IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법 (IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach)

  • 칸 탈하 애흐마드;아팍 모하메드;기자르 아바쓰;송왕철
    • KNOM Review
    • /
    • 제23권2호
    • /
    • pp.29-41
    • /
    • 2020
  • 네트워크는 빠르게 성장하여 다중 도메인 복잡성을 유발하고 있다. 네트워크 트래픽 및 서비스의 다양성, 다양성 및 동적 특성은 향상된 오케스트레이션 및 관리 접근 방식을 필요로한다. 많은 표준 오케스트레이터와 네트워크 운영자가 E2E 슬라이스 오케스트레이션을 처리하기 위한 복잡성이 증가하고 있다. 또한 액세스, 에지, 전송 및 코어 네트워크를 포함하여 E2E 슬라이스 오케스트레이션과 관련된 여러 도메인이 각각 특정 문제를 가지고 있다. 따라서 멀티 도메인, 멀티 플랫폼 및 멀티 오퍼레이터 기반 네트워킹 환경을 수동으로 처리하려면 특정 전문가가 필요하며 이 접근 방식을 사용하면 런타임에 네트워크의 동적 변경을 처리할 수 없다 또한 이러한 복잡성을 처리하기위한 수동 접근 방식은 항상 오류가 발생하기 쉽고 지루한 일이다. 따라서 본 연구에서는 의도 기반 접근법을 사용하여 E2E 슬라이스 오케스트레이션을 처리하기 위한 자동화되고 추상화된 솔루션을 제안한다. 운영자로부터 도메인을 추상화하고 높은 수준의 의도 형태로 오케스트레이션 의도를 제공 할 수 있다. 또한 조정 된 리소스를 적극적으로 모니터링하고 머신 러닝을 사용하여 현재 모니터링 통계를 기반으로 시스템 상태 업데이트를 위한 향후 리소스 활용도를 예측한다. Closed-loop 자동화 E2E 네트워크 오케스트레이션 및 관리 시스템이 생성된다.

예비교사를 위한 머신러닝 활용 물질의 상태 분류에 대한 융합교육 프로그램의 효과 분석 (Analysis of Effects of Convergence Education Program about State Classification of the Matters using Machine Learning for Pre-service Teachers)

  • 이소율;이영준;백성혜
    • 융합정보논문지
    • /
    • 제12권5호
    • /
    • pp.139-149
    • /
    • 2022
  • 본 연구는 예비교사의 미래 교육을 위한 인공지능 융합교육 역량을 함양하고, 동시에 학생의 학습 과정에 대한 이해를 증진할 수 있는 교육 프로그램을 개발하고 효과를 분석하는 것을 목적으로 하였다. 이를 위해 물질의 상태 분류를 주제로 머신러닝포키즈와 스크래치3를 활용한 인공지능 융합교육 프로그램을 15주차 분량으로 개발하였다. 개발된 내용은 자발적으로 참여한 K대학교 예비교사들에게 처치되었다. 그 결과, 예비교사들은 머신러닝의 학습을 이해하는 과정을 통해 학생의 학습 과정을 비유적으로 이해할 수 있었다. 또한, 인공지능 교수효능감의 사전-사후 t검정 결과는 t=-7.137(p< .000)으로 통계적으로 유의한 향상을 보였다. 따라서 본 연구에서 개발한 인공지능 융합교육 프로그램은 교생실습 외에 비간접적인 방식으로 예비교사의 학생에 대한 이해를 높일 수 있는데 도움이 되고, 인공지능 교육 역량 함양에 기여할 수 있음이 시사된다.

카드 데이터 기반 심층 관광 추천 연구 (Card Transaction Data-based Deep Tourism Recommendation Study)

  • 홍민성;김태경;정남호
    • 지식경영연구
    • /
    • 제23권2호
    • /
    • pp.277-299
    • /
    • 2022
  • 관광산업에서 발생하는 방대한 카드 거래 데이터는 관광객의 소비 행태와 패턴을 암시하는 중요한 자원이 되었다. 거래 데이터에 기반을 둔 스마트 서비스 시스템을 개발하는 것은 관광산업과 지식관리시스템 개발자들의 주요한 목표들 중 하나이다. 그러나 기존 추천 기법의 근간이 되어 온 평점을 활용하기 어렵다는 점은 시스템 설계자들이 학습 과정을 평가하기 어렵게 한다. 또한 시간적, 공간적, 인구통계학적 정보와 같이 추천 성과를 높일 수 있는 보조 요소들을 적절히 활용하는 방법도 어려운 상황이다. 이러한 문제들에 대하여 본 논문은 카드 거래 데이터를 기반으로 관광 서비스를 추천하는 새로운 방식인 CTDDTR을 제안한다. 먼저 Doc2Vec를 이용하여 시간성 선호도를 임베딩하여 관광객 그룹과 서비스 벡터로 데이터를 표현하였다. 다음 단계로 딥러닝 기술 중 하나인 다중 계층 퍼셉트론을 도입하여 얻어진 벡터와 관광 RDF로부터 도출한 보조 요소를 통합하여 심층 추천 모듈을 구성하였다. 추가로, 지식경영 분야의 RFM 분석 기법을 심층 추천 모듈에 도입하여 심층 신경망을 학습하는데 사용되는 평점을 생성함으로써 평점 부재 문제에 대응하였다. 제안한 CTDDTR의 추천 성능을 평가하기 위해 제주도에서 8년 동안 발생한 카드 거래 데이터를 사용하였고, 제안된 방법의 우수한 추천 성능과 보조 요소의 효과를 증명하였다.

한국과 중국의 메타버스에 관한 사회적 인식의 비교연구: 빅데이터 분석의 활용 (A Comparative Study on the Social Awareness of Metaverse in Korea and China: Using Big Data Analysis )

  • 김기연
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.71-86
    • /
    • 2023
  • 본 연구의 목적은 빅데이터 분석을 활용하여 메타버스에 관한 한국과 중국 사회의 공중 인식 특성에 관한 차이를 탐색적으로 비교하는 것이다. COVID-19 팬데믹의 영향, 기술적 발전, Z세대 및 알파 세대와 같은 새로운 소비자 기반 확대 등의 환경적 영향으로 메타버스에 관한 국제 사회의 관심이 집중되면서 관련 학술연구도 2021년부터 본격화되고 있다. 특히, 한국과 중국은 메타버스 산업을 선도하는 주요 국가로 급부상했다. 메타버스에 관한 빅데이터 언급량이 급증한 시점에서 양국에서 발생한 빅데이터를 활용하여 사회 인식의 차별성을 발견하는 것은 시의성 있는 연구문제이다. 분석기법은 텍스트마이닝 분석으로 정제 데이터의 단어빈도, N-gram, TF-IDF 분석을 수행하여 핵심 단어의 중요도를 파악하고, 시맨틱 네트워크의 밀도 및 중심성 분석을 통해 단어 간의 연결 강도와 의미적 연관성을 살펴보고자 한다. 데이터 분석은 Python 3.9 아나콘다 데이터 사이언스 플랫폼 3과 Textom 6 버전을 활용하였고, 시맨틱 네트워크 분석과 구조적 등위성(CONCOR) 분석을 위해 UCINET 6.759 프로그램으로 시각화 분석을 수행하였다. 분석 결과, 데이터를 유사성이 있는 단어 그룹으로서 각 4개씩의 블록을 도출하였다. 이 블록들은 메타버스에 관한 양국의 사회적 인식 유형을 각각 반영하는 관점들로 이해할 수 있다. 메타버스에 관한 연구들은 증가하고 있으나, 아직 비교문화 관점에서 국가나 다문화 간 비교연구 접근의 연구는 거의 수행되지 않았다. 이 시점에서 본 연구는 선행연구로서 후속 연구들에 이론적 근거와 의미 있는 인사이트를 제공할 수 있을 것으로 기대한다.

AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템 (Threat Situation Determination System Through AWS-Based Behavior and Object Recognition)

  • 김예영;정수현;박소현;박영호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.189-198
    • /
    • 2023
  • 길거리에서 묻지마 범죄가 자주 발생함에 따라 CCTV의 보급이 증가하고 있다. 그러나 수동적으로 작동되는 CCTV의 단점 때문에 지능형 CCTV의 필요성이 주목 받고 있다. 이러한 지능형 CCTV의 무거운 시스템 때문에, 높은 성능의 기기들이 필요해 일반 CCTV를 대체하는데 비용적 측면에서 부담이 발생한다. 이 문제를 해결하기 위해 낮은 품질의 영상도 인식하며 높지 않은 성능의 기기에서도 시스템이 구동되는 지능형 CCTV 시스템이 필요하다. 따라서 본 논문은 AWS 기반 플랫폼을 활용하여 시스템을 경량화하고 영상을 텍스트화하여 실시간으로 위협을 감지할 수 있는 Saying CCTV 시스템을 제안한다. 이는 YOLO v4와 OpenPose를 사용해 추출한 데이터를 바탕으로 위험 객체와 위협 행동 그리고 위협 상황을 판단하며, 위험도를 머신러닝으로 계산하도록 구현하였다. 이를 통해, 언제 어디서나 네트워크만 연결되면 시스템을 동작시킬 수 있으며, 영상 촬영과 이미지 업로드가 최소한의 성능의 기기에서도 시스템 사용이 가능하다. 나아가 영상을 분석하여 텍스트로 저장되는 데이터들로 하여금 범죄의 유의미한 통계를 자동화하여 신속한 범죄 예방이 가능하다.

호텔 방문객들의 문화적 특성이 호텔 선택속성에 끼치는 영향: Hofstede 문화차원을 중심으로 (The Effects of Hotel Visitors' Cultural Characteristics on Hotel Selection Attributes: Focusing on the Hofstede Cultural Dimension)

  • 장재원;이병현;김재경
    • 지식경영연구
    • /
    • 제24권1호
    • /
    • pp.99-126
    • /
    • 2023
  • 문화적 배경은 사회 구성원이 특정한 방향으로 인지하고 행동하도록 기여하는 역할을 하므로, 서로 다른 문화적 배경을 가진 고객들은 같은 서비스를 제공받아도 각자 다른 반응을 보인다. 호텔 방문객들은 서로 다른 문화적 배경을 가지고 있으므로, 호텔에서 제공되는 서비스나 시설에 대한 인식과 만족도 또한 다르다. 이에 따라 기존 연구에서는 Hofstede 문화차원을 활용하여, 호텔 방문객들의 문화적 배경에 따라 제공되는 서비스에 대한 만족도가 어떻게 달라지는지 파악하였다. 그러나 기존 연구에서는 호텔 방문객들의 문화적 배경만 고려하였으며, 여행 유형까지 고려한 연구는 많지 않은 실정이다. 그러나 많은 선행 연구에서 여행 유형에 따라 중요하게 고려하는 호텔 서비스 속성 요인들은 서로 상이한 것으로 나타났다. 따라서 본 연구에서는 호텔 방문객의 여행 유형을 비즈니스 방문객과 여가 관광여행 방문객으로 분류하고, Hofstede의 문화차원이 호텔 선택속성에 끼치는 영향이 여행 유형에 따른 차이를 분석하였다. 이를 위해, Hofstede의 6가지 문화차원에 대한 정보는 Hofstede insights에서 제공하는 오픈 데이터를 사용하였고, 호텔 선택속성에 대한 만족도는 대표적인 관광 플랫폼인 TripAdvisor에서 뉴욕 호텔에 대한 선택속성 평점 204,261개를 수집하였다. 따라서 본 연구는 향후 호텔에 방문하는 다양한 문화권 고객들이 어떠한 서비스 속성에 더 중점을 두는지를 파악할 수 있고, 그에 적합한 서비스를 제공할 수 있을 것으로 기대한다.

스마트도시 기술의 산업 활성화와 해외수출을 위한 전략적 접근 방안에 관한 연구 (A Study on Strategic Approaches Plans for Industrial Revitalization and Overseas Export of Smart City Technology)

  • 김대일;김정현;염춘호
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.67-80
    • /
    • 2022
  • 스마트도시의 다양한 융합기술 분야는 효율성과 생산성을 혁신적으로 높이는 4차 산업혁명 시대의 미래 먹거리로서, 성장이 멈춰버린 선진국이나 우리나라에 있어, 기존산업군의 성장 한계를 극복할 수 있는 중요한 대안이라 할 수 있다. 특히 최근 산업 발전과 함께 인구의 집중으로 도시화가 급격하게 진행되고 있는 아세안 국가를 중심으로 신도시 건설을 통해 스마트도시를 구축하는 것에 관심이 고조되고 있으며, 아세안 국가들의 본격적인 스마트도시화가 진행되고 있는 것으로 나타났다. 본 연구의 목적은 스마트도시 관련 기업의 현황을 분석하고 우선 순위가 높은 스마트도시 기술을 발굴하여 산업 활성화와 해외수출을 위한 전략적 접근 방안을 제시하는 데 있다. 이를 위해 선행연구를 통해 스마트도시 이론과 아세안 스마트도시에 대해 고찰하고, 국내 스마트도시 기술을 보유한 기업의 설문조사를 실시하였다. 설문조사 결과, 국내 스마트도시 기술 보유기업은 해외수출 참여 의지가 높으며, 건설, 교통, 그린·에너지 등의 기술 분야와 IoT, 플랫폼, AI 등의 서비스 유형에서 우선순위가 높았다. 또한 해외수출 활성화 방안으로, 1)규제완화와 인센티브, 2)글로벌 인재육성, 3)정보제공 및 현지 네트워크 강화, 4)재정 및 홍보지원을 통한 전략적 접근 방안을 도출하였다.

스마트카의 인터페이스를 위한 경험 디자인 가이드라인 (Experience Design Guideline for Smart Car Interface)

  • 유훈식;주다영
    • 디자인융복합연구
    • /
    • 제15권1호
    • /
    • pp.135-150
    • /
    • 2016
  • 통신 기술의 발달, 지능형교통체계(ITS: Intelligent Transport Systems)의 확산으로 자동차는 단순한 기계장치에서 종합편의 기능을 가진 제2의 생활 공간으로 변모하고 있으며, 이를 위한 인터페이스로써의 역할을 하는 플랫폼으로 진화하고 있다. 탑승자들에게 다양한 정보를 제공하는 인터페이스 영역이 확장됨에 따라 스마트카 기반의 사용자 경험(UX: User Experience) 연구에 대한 중요성이 높아지고 있다. 이 연구는 스마트카의 사용자 경험 요소에 대한 가이드라인을 제안하는데 목적을 두고 있다. 연구의 수행을 위해 기존 연구를 기반으로 스마트카의 사용자 경험 요소를 기능(function), 상호작용(interaction), 표면(surface)으로 정의하였으며, UX/UI 전문가들의 논의를 통해 각 요소 별로 8개의 대표 기술, 14개의 대표 기능, 8개의 유리창의 위치를 정의하였다. 이 후 100명의 운전자를 대상으로 정의된 스마트카 사용자 경험 요소들에 대한 우선순위를 설문조사 방식으로 분석하였다. 분석을 통해 사용자들은 차량에 주요 기술을 적용함에 있어서 안전, 주행, 감성의 순으로, 조작 방식에 있어서는 음성인식, 터치, 제스처, 물리적 버튼, 아이트레킹의 순으로, 디스플레이 위치에 대해서는 운전석을 중심으로 전방에서 후방으로 높은 우선순위를 가지고 있는 것을 알 수 있었다. 성별에 따른 분석에 있어서는 2개의 기능 외에는 큰 차이를 보이지 않아 남성과 여성에 대한 가이드가 공통되게 적용될 수 있음을 알 수 있었다.

Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링 (Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data)

  • 김민주;현창욱
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.311-323
    • /
    • 2023
  • 기름 유출 사고는 발생 시 환경과 관련된 다양한 문제들을 야기하므로 신속하게 유출유의 면적과 위치 변화를 파악하는 것이 중요하다. 광학 위성자료를 활용한 기름 유출 탐지의 경우 다양한 위성탑재 센서를 통해 유출유에 대한 정보 수집 후 이를 이용하여 광범위한 기름 유출 범위를 모니터링할 수 있다. 선행 연구에서는 파장별 기름의 반사도를 분석한 후 특정 파장대의 밴드를 이용한 oil spill index가 개발 및 적용되었다. 기름 유출 모니터링을 위해 유출 전후 여러 시기의 위성자료를 분석할 경우 다량의 데이터로 인해 많은 시간과 컴퓨팅 자원이 소비된다. 웹 브라우저를 통해 대량의 위성자료 분석이 가능한 Google Earth Engine을 활용할 경우 효율적으로 기름 유출 탐지가 가능하다. 본 연구에서는 Sentinel-2 MultiSpectral Instrument 위성자료와 클라우드 기반의 위성자료 분석 플랫폼인 Google Earth Engine을 이용하여 기존에 제안된 네 종류의 oil spill index의 다양한 피복 환경에서의 활용성 평가를 수행하였다. 지표 피복별 index 값의 비교를 통해 기름 유출 영역이 타 피복과 잘 구분되는지에 대한 분리도를 평가하고 기름 유출 면적을 산정하였다. 본 연구 결과를 통해 Google Earth Engine이 기름 유출 광역 모니터링에 효율적으로 활용 가능하다는 것을 확인하였고, 복잡한 지표 피복이 분포하는 다른 지역에 기름 유출 사고 발생 시 우수한 성능으로 평가된 oil spill index B ((B3+B4)/B2)와 C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5)의 적용은 효과적인 기름 유출 모니터링에 기여할 것으로 판단된다.

휴리스틱스(Heuristics)를 활용한 지능형 굴삭 시스템의 Task Planning System 개발 (Development of Task Planning System for Intelligent Excavating System Applying Heuristics)

  • 이승수;김정환;강상혁;서종원
    • 대한토목학회논문집
    • /
    • 제28권6D호
    • /
    • pp.859-869
    • /
    • 2008
  • 현재 전 세계적으로 이미 대부분 산업에서의 생산라인은 자동화되었으며 이는 생산성 및 경제성의 향상, 산업 재해에 대한 안전성 확보, 품질 향상 및 경쟁력 향상 등 많은 이익을 가져왔다. 그러나 건설 산업에서 자동화는 일반적인 산업생산라인과 달리 끊임없는 불확정적인 사건의 발생과 이에 따른 지능적 판단 및 처리 능력의 필요성으로 인한 해결해야 할 많은 어려움이 따르기 때문에 여전히 건설 기계장비 사용을 통한 노동력 투입에 의존하고 있다. 이러한 문제를 해결하기위하여 유럽, 미국, 일본 등 선진국에서 건설 자동화를 위한 끊임없는 연구가 진행 중이며 도로 포장, 다짐 및 작업프로세스가 비교적 단순한 반복형 작업에 대하여 자동화가 많이 이루어 졌지만 건설 현장에서 가장 비중을 많이 차지하는 토공 작업에 대하여 아직 자동화 연구가 미흡하다. 토공 작업의 자동화를 위해서는 획득된 지형정보를 분석하여 효율적인 작업 계획의 수립이 수행되어야 하며, 이를 위해 숙련된 작업자의 휴리스틱스(heuristics)를 활용하면 보다 시행착오가 적고 안전하며 효율적인 작업계획을 수립할 수 있을 것이다. 따라서 본 연구에서는 지능형 굴삭 시스템의 효율적인 작업계획의 수립을 위한 시스템인 지능형 Task Planning System의 구성 체계 및 각 단계마다 적용된 휴리스틱스(heuristics)에 대하여 소개하여 본다.