• 제목/요약/키워드: Information Signal Process

검색결과 1,426건 처리시간 0.037초

MZI를 이용한 전광 직렬-병렬 데이터 형식 변환기 구현과 활용 방안 (Implementation of All-Optical Serial-Parallel Data Converters Using Mach-Zehnder Interferometers and Applications)

  • 이성철
    • 디지털산업정보학회논문지
    • /
    • 제7권2호
    • /
    • pp.59-65
    • /
    • 2011
  • All-optical signal processing is expected to offer advantages in speed and power consumption against over electronics signal processing. It has a potential to solve the bottleneck issues of ultra-high speed communication network nodes. All-optical serial-to-parallel and parallel-to-serial data converters would make it possible to easily process the serial data information of a high-speed optical packet without optical-to-electronic-to-optical data conversion. In this paper, we explain the principle of simple and easily expandable all-optical serial-to-parallel and parallel-to-serial data converters based on Mach-Zehnder interferometers. We experimentally demonstrate these data converters at 10Gbit/s serial data rate. They are useful all-optical devices for the all-optical implementations of label decoding, self-routing, control of variable packets, bit-wise logical operation, and data format conversion.

Application of Nonuniform Weighted Distribution Method to Enhancing Signal Processing Effect of Subband Spatial-Temproral Adaptive Filter

  • Vuong Le Quoc;Tai Pham Trong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.97-102
    • /
    • 2004
  • The very complicated proplem in spatial processing is effects of phading (Multipath and Delay Spread) and co-channel interference (CCI). The phading is one of principal causes, that form inter-symbol interference (ISI). Spatial-Temproral Adaptive Filter (STAF) has been taken as a solution of this problem, because it can suppress both these types of interference. But the performance of STAF exposes some elemental limitations, in which are the slow convergence of adaptive process and computational complexity. The cause of this is that, STAF must treat a large quantity of information in both space and time. The way that master these limitation is a use of Subband Spatial-Temproral Adaptive Filter (SSTAF). SSTAF reduce computational complexity by pruning off samples of signal and thus it lost some information in time. This draw on attennation of output SINR of SSTAF. The article analyse a optimal solution of this problem by introducing SSTAF with nonuniform weighted distribution.

  • PDF

웨이브렛 변환과 파워 스펙트럼 분석을 이용한 EEG의 안정 상태 인식에 관한 고찰 (Recognition of Stable State of EEG using Wavelet Transform and Power Spectrum Analysis)

  • 김영서;길세기;임선아;민홍기;허웅;홍승홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.879-880
    • /
    • 2006
  • The subject of this paper is to recognize the stable state of EEG using wavelet transform and power spectrum analysis. An alpha wave, showed in stable state, is dominant wave for a human EEG and a beta wave displayed excited state. We decomposed EEG signal into an alpha wave and a beta wave in the process of wavelet transform. And we calculated each power spectrum of EEG signal, an alpha wave and a beta wave using Fast Fourier Transform. We recognized the stable state by making a comparison between power spectrum ratios respectively.

  • PDF

MAPK Hypotonic Shock의 Signaling Pathway에 대한 시뮬레이션 (Simulation for Signaling Pathway of MAPK Hypotonic Shock)

  • 조미경;서정만;박현석
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.175-182
    • /
    • 2009
  • Yeast를 이용하여 Two-Hybrid System 실험을 통해 밝혀진 단백질 상호작용 데이터에 단백질 위치 정보를 이용하여 가중치를 부여하고 단백질 신호 전달 경로를 추출하였다. 그 결과 중 MAPK Hypotonic Shock 기능의 데이터를 가지고 KEGG에서 제공하는 신호전달 경로와 비교하여 어느 정도 일치하는지의 유사도를 측정하고 시뮬레이션 하였다. 이때 프로세스 실행 시간도 측정하여 제시하였다. 향후 연구를 발전시키면 다양한 유전적 질병의 원인과 치료제 개발의 단서를 제공할 수 도 있으며 더 나아가 신약 개발을 할 수 있다.

Efficient Signature-Driven Self-Test for Differential Mixed-Signal Circuits

  • Kim, Byoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권5호
    • /
    • pp.713-718
    • /
    • 2016
  • Predicting precise specifications of differential mixed-signal circuits is a difficult problem, because analytically derived correlation between process variations and conventional specifications exhibits the limited prediction accuracy due to the phase unbalance, for most self-tests. This paper proposes an efficient prediction technique to provide accurate specifications of differential mixed-signal circuits in a system-on-chip (SoC) based on a nonlinear statistical nonlinear regression technique. A spectrally pure sinusoidal signal is applied to a differential DUT, and its output is fed into another differential DUT through a weighting circuitry in the loopback configuration. The weighting circuitry, which is employed from the previous work [3], efficiently produces different weights on the harmonics of the loopback responses, i.e., the signatures. The correlation models, which map the signatures to the conventional specifications, are built based on the statistical nonlinear regression technique, in order to predict accurate nonlinearities of individual DUTs. In production testing, once the efficient signatures are measured, and plugged into the obtained correlation models, the harmonic coefficients of DUTs are readily identified. This work provides a practical test solution to overcome the serious test issue of differential mixed-signal circuits; the low accuracy of analytically derived model is much lower by the errors from the unbalance. Hardware measurement results showed less than 1.0 dB of the prediction error, validating that this approach can be used as production test.

음성 하모닉스 스펙트럼의 피크-피팅을 이용한 피치검출에 관한 연구 (A Study on the Pitch Detection of Speech Harmonics by the Peak-Fitting)

  • 김종국;조왕래;배명진
    • 음성과학
    • /
    • 제10권2호
    • /
    • pp.85-95
    • /
    • 2003
  • In speech signal processing, it is very important to detect the pitch exactly in speech recognition, synthesis and analysis. If we exactly pitch detect in speech signal, in the analysis, we can use the pitch to obtain properly the vocal tract parameter. It can be used to easily change or to maintain the naturalness and intelligibility of quality in speech synthesis and to eliminate the personality for speaker-independence in speech recognition. In this paper, we proposed a new pitch detection algorithm. First, positive center clipping is process by using the incline of speech in order to emphasize pitch period with a glottal component of removed vocal tract characteristic in time domain. And rough formant envelope is computed through peak-fitting spectrum of original speech signal infrequence domain. Using the roughed formant envelope, obtain the smoothed formant envelope through calculate the linear interpolation. As well get the flattened harmonics waveform with the algebra difference between spectrum of original speech signal and smoothed formant envelope. Inverse fast fourier transform (IFFT) compute this flattened harmonics. After all, we obtain Residual signal which is removed vocal tract element. The performance was compared with LPC and Cepstrum, ACF. Owing to this algorithm, we have obtained the pitch information improved the accuracy of pitch detection and gross error rate is reduced in voice speech region and in transition region of changing the phoneme.

  • PDF

Experimental Characterization-Based Signal Integrity Verification of Sub-Micron VLSI Interconnects

  • Eo, Yung-Seon;Park, Young-Jun;Kim, Yong-Ju;Jeong, Ju-Young;Kwon, Oh-Kyong
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.17-26
    • /
    • 1997
  • Interconnect characterization on a wafer level was performed. Test patterns for single, two-coupled, and triple-coupled lines ere designed by using 0.5$\mu\textrm{m}$ CMOS process. Then interconnect capacitances and resistances were experimentally extracted by using tow port network measurements, Particularly to eliminate parasitic effects, the Y-parameter de-embedding was performed with specially designed de-embedding patterns. Also, for the purpose of comparisons, capacitance matrices were calculated by using the existing CAD model and field-solver-based commercial simulator, METAL and MEDICI. This work experimentally verifies that existing CAD models or parameter extraction may have large deviation from real values. The signal transient simulation with the experimental data and other methodologies such as field-solver-based simulation and existing model was performed. as expected, the significantly affect on the signal delay and crosstalk. The signal delay due to interconnects dominates the sub-micron-based a gate delay (e.g., inverter). Particularly, coupling capacitance deviation is so large (about more than 45% in the worst case) that signal integrity cannot e guaranteed with the existing methodologies. The characterization methodologies of this paper can be very usefully employed for the signal integrity verification or he electrical design rule establishments of IC interconnects in the industry.

  • PDF

소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템 (Neural Network-based FMCW Radar System for Detecting a Drone)

  • 장명재;김순태
    • 대한임베디드공학회논문지
    • /
    • 제13권6호
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

비접촉형 심박수 측정 정확도 향상을 위한 인공지능 기반 CW 레이더 신호처리 (Artificial Intelligence-Based CW Radar Signal Processing Method for Improving Non-contact Heart Rate Measurement)

  • 윤원열;권남규
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.277-283
    • /
    • 2023
  • Vital signals provide essential information regarding the health status of individuals, thereby contributing to health management and medical research. Present monitoring methods, such as ECGs (Electrocardiograms) and smartwatches, demand proximity and fixed postures, which limit their applicability. To address this, Non-contact vital signal measurement methods, such as CW (Continuous-Wave) radar, have emerged as a solution. However, unwanted signal components and a stepwise processing approach lead to errors and limitations in heart rate detection. To overcome these issues, this study introduces an integrated neural network approach that combines noise removal, demodulation, and dominant-frequency detection into a unified process. The neural network employed for signal processing in this research adopts a MLP (Multi-Layer Perceptron) architecture, which analyzes the in-phase and quadrature signals collected within a specified time window, using two distinct input layers. The training of the neural network utilizes CW radar signals and reference heart rates obtained from the ECG. In the experimental evaluation, networks trained on different datasets were compared, and their performance was assessed based on loss and frequency accuracy. The proposed methodology exhibits substantial potential for achieving precise vital signals through non-contact measurements, effectively mitigating the limitations of existing methodologies.

디지털 방식 FM 합성 신호 발생기의 구현 (Implementation of a digital FM composite signal generator)

  • 정도영;김대용;유영갑
    • 한국통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.1349-1359
    • /
    • 1998
  • 본 논문에서는 디지털 FM 스테레오 합성 신호 발생기(FM stereo composite signal generator)의 구현 결과를 제시하였다. 직접 디지털 주파수 합성기(DDFS)를 응용하여 단일 칩으로 디지털화 하였으며, $1.0\mu\textrm{m}$ CMOS 게이트­어레이 기술로 구현하였다. 설계 결과는 시뮬레이션을 통해 신호 발생 과정을 검증하였고, 디지털 칩을 실장한 평가용 인쇄회로기판을 제작하여 신호 발생 값을 비교 분석하였다. 측정 결과 디지털-아날로그 변환기의 비트 수가 12비트일 때 신호 대 잡음비가 74dB가 측정되었으며, 이는 아날로그 회로보다 14dB 더 우수한 것이다. 범용 스테레오 입출력으로 16비트 디지털-아날로그 변환기를 사용할 경우 아날로그 방식보다 훨씬 우수한 스펙트럼 순수도를 얻을 수 있을 것으로 기대한다. 디지털 FM 스테레오 합성 신호 발생기는 신호 대 잡음비, 정확도, 튜닝 안정성,그리고 집적도측면에서 기존의 아날로그회로보다 우수한 특성을 보인다.

  • PDF