• Title/Summary/Keyword: Information Projection

Search Result 1,042, Processing Time 0.027 seconds

Experiment on Camera Platform Calibration of a Multi-Looking Camera System using single Non-Metric Camera (비측정용 카메라를 이용한 Multi-Looking 카메라의 플랫폼 캘리브레이션 실험 연구)

  • Lee, Chang-No;Lee, Byoung-Kil;Eo, Yang-Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.351-357
    • /
    • 2008
  • An aerial multi-looking camera system equips itself with five separate cameras which enables acquiring one vertical image and four oblique images at the same time. This provides diverse information about the site compared to aerial photographs vertically. The geometric relationship of oblique cameras and a vertical camera can be modelled by 6 exterior orientation parameters. Once the relationship between the vertical camera and each oblique camera is determined, the exterior orientation parameters of the oblique images can be calculated by the exterior orientation parameters of the vertical image. In order to examine the exterior orientation of both a vertical camera and each oblique cameras in the multi-looking camera relatively, calibration targets were installed in a lab and 14 images were taken from three image stations by tilting and rotating a non-metric digital camera. The interior orientation parameters of the camera and the exterior orientation parameters of the images were estimated. The exterior orientation parameters of the oblique image with respect to the vertical image were calculated relatively by the exterior orientation parameters of the images and error propagation of the orientation angles and the position of the projection center was examined.

Studies on Changes and Future Projections of Subtropical Climate Zones and Extreme Temperature Events over South Korea Using High Resolution Climate Change Scenario Based on PRIDE Model (남한 상세 기후변화 시나리오를 이용한 아열대 기후대 및 극한기온사상의 변화에 대한 연구)

  • Park, Chang Yong;Choi, Young Eun;Kwon, Young A;Kwon, Jae Il;Lee, Han Su
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.600-614
    • /
    • 2013
  • This study aims to examine spatially-detailed changes and projection of subtropical climate zones based on the modified K$\ddot{o}$ppen-Trewartha's climate classification and extreme temperature indices using $1km{\times}1km$ high resolution RCP 4.5 and RCP 8.5 climate change scenarios based on PRIDE model over the Republic of Korea. Subtropical climate zones currently located along the southern coastal region. Future subtropical climate zones would be pushed northwards expanding to the western and the eastern coastal regions as well as some metropolitan areas. For both scenarios, the frequency of cold-related extreme temperatures projects to be reduced while the frequency of hot-related ones projects to be increased. Especially, hot days with $33^{\circ}C$ or higher temperature projects to occur more than 30 days over the most of regions except for some mountain areas with high altitudes during the period of 2070~2100. This study might provide essential information to make climate change adaptation processes be enhanced.

  • PDF

Development of a Computer Program for Stand Spatial Structure Analysis (임분(林分) 공간구조(空間構造) 분석(分析)을 위한 컴퓨터 프로그램의 개발(開發))

  • Shin, Man Yong;Oh, Jung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.389-399
    • /
    • 1999
  • This study was conducted to develop an application software, SIDAS3D(Stand Inventory Data Analysis System for 3 Dimensional Representation), of which the purpose of development is to make it easier to analyze and display the 3D spatial structure of a forest stand, based on the data such as tree position, species, DBH, height, clear length of individual trees, and crown width. This program has a statistical analysis function for stand attributes per hectare and displays simple graphs of stand statistics such as the distribution of diameters, heights, and volumes. It also has two additional functions, of which one is to display the 3D image of stand structure and the other is to display the image of crown projection. In addition, this program provides an imaginary treatment simulation function, which can visually confirm the suitability of silvicultural treatments on computers. To test the precision and reliability of SIDAS3D, data obtained by the precision forest inventory method were used. Statistical analysis ability of SIDAS3D was compared with that of SAS. And its representational ability was compared with that of TreeDraw. According to the verification, SIDAS3D was superior to SAS and TreeDraw in both the data processing time and the interpretative ability of results. It was concluded that SIDAS3D could be used to help users efficiently make decisions for appropriate silvicultural treatments and rational management plans because it has analysis functions providing various valuable information.

  • PDF

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.

Color Correction for Projected Image on Light Colored Screen using a Still Camera (카메라를 사용한 유색 스크린에 투영된 영상의 색 보정 기법)

  • Kim, Dae-Chul;Lee, Tae-Hyoung;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • Recently, the use of portable projector expands applications to meeting at fields. Accordingly, the projection is not always guaranteed on white screen, causing some color distortion. Several algorithms have been suggested to correct the projected color on the light colored screen. These have limitation on the use of measurement equipment which can't bring always. In this paper, color correction method using general still camera as convenient measurement equipment is proposed to match the colors between on white and colored screens. A patch containing 9 ramps of each channel are firstly projected on white and colored screens, then captured by the camera, respectively, Next, digital values are obtained by the captured image for each ramp patch on both screens, resulting in different values to the same patch. After that, we check which ramp patch on colored screen has the same digital value on white screen, repeating this procedure for all ramp patches. The difference between corresponding ramp patches reveals the quantity of color shift. Then, color correction matrix is obtained by regression method using matched values. In the experimental results, the proposed method gives better color correction on the objective and subjective evaluation than the previous methods.

A PIVOT based Query Optimization Technique for Horizontal View Tables in Relational Databases (관계 데이터베이스에서 수평 뷰 테이블에 대한 PIVOT 기반의 질의 최적화 방법)

  • Shin, Sung-Hyun;Moon, Yang-Sae;Kim, Jin-Ho;Kang, Gong-Mi
    • The KIPS Transactions:PartD
    • /
    • v.14D no.2
    • /
    • pp.157-168
    • /
    • 2007
  • For effective analyses in various business applications, OLAP(On-Line Analytical Processing) systems represent the multidimensional data as the horizontal format of tables whose columns are corresponding to values of dimension attributes. Because the traditional RDBMSs have the limitation on the maximum number of attributes in table columns(MS SQLServer and Oracle permit each table to have up to 1,024 columns), horizontal tables cannot be directly stored into relational database systems. In this paper, we propose various efficient optimization strategies in transforming horizontal queries to equivalent vertical queries. To achieve this goral, we first store a horizontal table using an equivalent vertical table, and then develop various query transformation rules for horizontal table queries using the PIVOT operator. In particular, we propose various alternative query transformation rules for the basic relational operators, selection, projection, and join. Here, we note that the transformed queries can be executed in several ways, and their execution times will differ from each other. Thus, we propose various optimization strategies that transform the horizontal queries to the equivalent vertical queries when using the PIVOT operator. Finally, we evaluate these methods through extensive experiments and identify the optimal transformation strategy when using the PIVOT operator.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

The Study of Effectiveness of 3 Spot DR for the Whole Spine Radiography with Comparison of Phantom Distortions (3 Spot DR를 이용한 척추 전장 촬영 시 모형 왜곡도 비교를 통한 유용성 연구)

  • Kim, Sang-Hyun;Lee, Mi-Hwa
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.345-351
    • /
    • 2014
  • The purpose of this study is to offer more accurate information in whole spine examination of 3 spot DR through the comparative study about image distortion as making the flat phantom and measuring horizontal, vertical ratio and cobb angle of the virtual. We produced $H(40cm){\times}V(116cm){\times}D(2.3cm)$ flat acrylic phantom with lattice type of lead plate. We took projection respectively 3 times, total 9 times in each equipments using manufactured phantom as changing OFD to 6, 12, 18 cm. We measured a horizontal and vertical length of lead lattice and calculated the ratio. As appointing arbitrary points in the phantom and we measured cobb angle. The results of horizontal, vertical ratio measured CR type 0.98~1.01, scan DR type 0.96~0.97 and 3 spot DR 0.99~1.01. Cobb angle measured $52.5{\sim}53.3^{\circ}$, $52.1{\sim}54.3^{\circ}$ and $52.8{\sim}53.2^{\circ}$. Finally we can say that 3 spot DR method is an accurate method without any distortion in whole spine radiography.

Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction (실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법)

  • Kim Sehwan;Woo Woontack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.39-52
    • /
    • 2005
  • In this paper, a registration method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor environment. In general, conventional registration methods require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has comparatively low precision. To overcome these drawbacks, a projection-based registration method is proposed. First, depth images are refined based on temporal property by excluding 3D points with a large variation, and spatial property by filling up holes referring neighboring 3D points. Second, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to enable modified KLT (Kanade-Lucas-Tomasi) to find correspondences. Then, fine registration is carried out through minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring colors of corresponding points and reconstruct an indoor environment by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor environment.

A study on the regional climate change scenario for impact assessment on water resources (수자원 영향평가에 활용 가능한 지역기후변화 시나리오 연구)

  • Im, Eun-Soon;Kwon, Won-Tae;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1043-1056
    • /
    • 2006
  • Our ultimate purpose is to investigate the potential change in regional surface climate due to the global warming and to produce higher quality regional surface climate information over the Korean peninsula for comprehensive impact assessment. Toward this purpose, we carried out two 30-year long experiments, one for present day conditions (covering the period 1971-2000) and one for near future climate conditions (covering the period 2021-2050) with a regional climate model (RegCM3) using a one-way double-nested system. In order to obtain the confidence in a future climate projection, we first verify the model basic performance of how the reference simulation is realistic in comparison with a fairly dense observation network. We then examine the possible future changes in mean climate state as well as in the frequency and intensity of extreme climate events to be derived by difference between climate condition as a baseline and future simulated climate states with increased greenhouse gas. Emphasis in this study is placed on the high-resolution spatial/temporal aspects of the climate change scenarios under different climate settings over Korea generated by complex topography and coastlines that are relevant on a regional scale.