• 제목/요약/키워드: Information Model of Earthquake

검색결과 150건 처리시간 0.015초

Development of a Targeted Recommendation Model for Earthquake Risk Prevention in the Whole Disaster Chain

  • Su, Xiaohui;Ming, Keyu;Zhang, Xiaodong;Liu, Junming;Lei, Da
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.14-27
    • /
    • 2021
  • Strong earthquakes have caused substantial losses in recent years, and earthquake risk prevention has aroused a significant amount of attention. Earthquake risk prevention products can help improve the self and mutual-rescue abilities of people, and can create convenient conditions for earthquake relief and reconstruction work. At present, it is difficult for earthquake risk prevention information systems to meet the information requirements of multiple scenarios, as they are highly specialized. Aiming at mitigating this shortcoming, this study investigates and analyzes four user roles (government users, public users, social force users, insurance market users), and summarizes their requirements for earthquake risk prevention products in the whole disaster chain, which comprises three scenarios (pre-quake preparedness, in-quake warning, and post-quake relief). A targeted recommendation rule base is then constructed based on the case analysis method. Considering the user's location, the earthquake magnitude, and the time that has passed since the earthquake occurred, a targeted recommendation model is built. Finally, an Android APP is implemented to realize the developed model. The APP can recommend multi-form earthquake risk prevention products to users according to their requirements under the three scenarios. Taking the 2019 Lushan earthquake as an example, the APP exhibits that the model can transfer real-time information to everyone to reduce the damage caused by an earthquake.

2017년 포항지진으로 인하여 발생된 최대지반가속도 (PGA)예측 (Prediction of Peak Ground Acceleration Generated from the 2017 Pohang Earthquake)

  • 지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.211-217
    • /
    • 2018
  • The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distance-frequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.

Development of Earthquake Damage Estimation System and its Result Transmission by Engineering Test Satellite for Supporting Emergency

  • Jeong, Byeong-Pyo;Hosokawa, Masafumi;Takizawa, Osamu
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.12-19
    • /
    • 2011
  • Drawing on its extensive experience with natural disasters, Japan has been dispatching Japan Disaster Relief (JDR) team to disaster-stricken countries to provide specialist assistance in rescue and medical operations. The JDR team has assisted in the wake of disasters including the 2004 Indian Ocean Earthquake and the 2008 Sichuan Earthquake in China. Information about the affected area is essential for a rapid disaster response. However, it can be difficult to gather information on damages in the immediate post-disaster period. To help overcome this problem, we have built on an Earthquake Damage Estimation System. This system makes it possible to produce distributions of the earthquake's seismic intensity and structural damage based on pre-calculated data such as landform and site amplification factors for Peak Ground Velocity, which are estimated from a Digital Elevation Model, as well as population distribution. The estimation result can be shared with the JDR team and with other international organizations through communications satellite or the Internet, enabling more effective rapid relief operations.

  • PDF

지진이 발생했을 때의 정보통신의 역할 (Part of Information and Communication by occurrence of the earthquake)

  • 김종윤;신현식
    • 한국전자통신학회논문지
    • /
    • 제1권2호
    • /
    • pp.95-101
    • /
    • 2006
  • 근래에 이르러 인도네시아의 지진해일 때 수많은 사상자가 나오고, 일본근해의 지진의 영향으로 우리나라에도 영향을 미쳤다. 이에 따라, 지진에 대한 대비와 지진이 발생하였을 때의 신속한 정보전달이 중요한 요인이 되었다. 따라서 지진을 감지한 관측지에서 지진의 영향이 우려되는 지역으로의 신속한 정보 전달체계를 확립하고, 더 나은 지진 관측 장비를 개발함으로써, 지진피해로 인한 시민의 재산과 생명의 손실을 최소화 하는데 이바지 하고자 한다.

  • PDF

점지진원 모델을 이용한 경주 지진으로 인한 지반운동 생성 (Simulation of Ground Motions from Gyeongju Earthquake using Point Source Model)

  • 하성진;지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.537-543
    • /
    • 2016
  • In low to moderate seismic regions, there are limited earthquake ground motion data recorded from past earthquakes. In this regard, the Gyeongju earthquake (M=5.8)occurred on September 12, 2016 produces valuable information on ground motions. Ground motions were recorded at various recording stations located widely in Korean peninsula. Without actual recoded ground motions, it is impossible to make a ground motion prediction model. In this study, a point source model is constructed to accurately simulate ground motions recorded at different stations located on different soil conditions during the Gyeongju earthquake. Using the model, ground motions are generated at all grid locations of Korean peninsula. Each grid size has $0.1^{\circ}(latitude){\times}0.1^{\circ}(longitude)$. Then a contour hazard map is constructed using the peak ground acceleration of the simulated ground motions.

사용자 수요조사를 통한 지진 대응기술의 보급 및 실용성 제고 방안 연구 (A Study on Dissemination of Earthquake Response Technology and Improvement of Practicality through User Demand Surveys)

  • 최선화
    • 한국산업정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.33-46
    • /
    • 2021
  • 대한민국 지진관측 사상 최대인 규모 5.8 지진이 2016년 경주에서 발생하였고, 두 번째로 큰 규모 5.4의 지진이 포항에서 연이어 발생하였다. 정부나 지자체는 그간 경험하지 못했던 지진이 발생하자 긴급 재난 문자 발송, 대응 정보 전달 등의 지진 대응 업무에 대한 문제들이 노출됐고, 현장에 있는 국민은 적절한 정보를 전달받지 못해 대응 과정에서 혼란이 가중되었다. 이 같은 상황을 해결하기 위해서는 지진 발생 직후 국민에게 필요한 정보를 신속히 전달하는 지진 대응 서비스가 필요하다. 국립재난안전연구원에서는 지진 발생 직후 지진 상황 및 장소에 따라 맞춤형 정보를 신속히 전달하는 모델인 지진동 경보기 기반 지진 안심서비스 기술을 개발하고 있다. 본 논문에서는 지진 발생 직후, 현장에 있는 국민에게 필요한 정보를 전달함으로써 원활하게 대응하도록 도와주는 지진동 경보기와 이를 활용한 지진 안심서비스 기술을 소개한다. 또한, 이 기술에 대한 사용자 수요와 의견을 조사·분석하여, 기술보급과 실용성을 높이기 위한 향후 R&D 방향과 정책적 방안을 제시한다.

Hualien 대형내진모델시험의 지진응답 계측데이타 분석 (Analysis of Earthquake Response Data Recorded from the Hualien Large-Scale Seismic Test)

  • 현창헌
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.335-342
    • /
    • 1998
  • A soil-structure interaction (SSI) experiment is being conducted in a seismically active region in Hualien, Taiwan. To obtain earthquake data for quantifying SSI effects and providing a basis to benchmark analysis methods, a 1/4-th scale cylindrical concrete containment model similar in shape to that of a nuclear power plant containment was constructed in the field where both the containment model and its surrounding soil, surface and sub-surface, are extensively instrumented to record earthquake data. In between September 1993 and May 1996, fifteen earthquakes with Richter magnitudes ranging from 4.2 to 6.2 were recorded. The recorded data were analyzed to provide information on the response characteristics of the Hualien soil-structure system, the SSI effects and the ground motion characteristics. The ground response data were analyzed for their variations with depth, with distance from the model structure, and at the same depths along downhole arrays. Variations of soil stiffness and soil-structure system frequencies were also evaluated against maximum ground motion. In addition, the site soil properties were derived based on correlation analysis of the recorded data and then correlated with those from the geotechnical investigation data.

  • PDF

지진 취약성 평가 모델 교차검증: 경주(2016)와 포항(2017) 지진을 대상으로 (A Cross-Validation of SeismicVulnerability Assessment Model: Application to Earthquake of 9.12 Gyeongju and 2017 Pohang)

  • 한지혜;김진수
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.649-655
    • /
    • 2021
  • 본 연구는 경주시를 대상으로 수행한 선행연구를 바탕으로 도출된 최적의 지진 취약성 평가 모델을 타 지역에 적용하여 그 성능을 교차 검증(cross-validation)하고자 한다. 테스트 지역은 2017 포항지진(Pohang Earthquake)이 발생한 포항시이며, 선행연구와 동일한 영향인자 및 피해현황 관련 데이터셋을 구축하였다. 검증 데이터 셋은 무작위로 추출해 구축하였으며, 경주시의 랜덤 포레스트(random forest, RF) 기반의 모델에 적용하여 예측 정확도를 도출하였다. 경주시의 모델(success) 및 예측(prediction) 정확도는 100%, 94.9%이며, 포항시 검증 데이터 셋을 적용해 예측 정확도를 확인한 결과 70.4%로 나타났다.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Applications of Seismic Disaster Simulation Technology on Risk Management

  • Yeh, Chin-Hsun
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2010년도 정기 학술발표대회
    • /
    • pp.16-24
    • /
    • 2010
  • This paper introduces the applications of Taiwan Earthquake Loss Estimation System (TELES), which is developed by the National Center for Research on Earthquake Engineering (NCREE). Seismic disaster simulation technology (SDST) integrates geographical information system to assess the distribution of ground shaking intensity, ground failure probability, building damages, casualties, post-quake fires, debris, lifeline interruptions, economic losses, etc. given any set of seismic source parameters. The SDST may integrate with Taiwan Rapid Earthquake Information Release System (TREIRS) developed by Central Weather Bureau (CWB) to obtain valuable information soon after large earthquakes and to assist in decision-making processes to dispatch rescue and medical resources more efficiently. The SDST may also integrate with probabilistic seismic source model to evaluate various kinds of risk estimates, such as average annual loss, probable maximum loss in one event, and exceeding probability curves of various kinds of losses, to help proposing feasible countermeasures and risk management strategies.

  • PDF