• 제목/요약/키워드: Information Logistic System

검색결과 336건 처리시간 0.033초

비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형 (An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost)

  • 이현욱;안현철
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.157-173
    • /
    • 2011
  • 최근 인터넷 사용의 증가에 따라 네트워크에 연결된 시스템에 대한 악의적인 해킹과 침입이 빈번하게 발생하고 있으며, 각종 시스템을 운영하는 정부기관, 관공서, 기업 등에서는 이러한 해킹 및 침입에 의해 치명적인 타격을 입을 수 있는 상황에 놓여 있다. 이에 따라 인가되지 않았거나 비정상적인 활동들을 탐지, 식별하여 적절하게 대응하는 침입탐지 시스템에 대한 관심과 수요가 높아지고 있으며, 침입탐지 시스템의 예측성능을 개선하려는 연구 또한 활발하게 이루어지고 있다. 본 연구 역시 침입탐지 시스템의 예측성능을 개선하기 위한 새로운 지능형 침입탐지모형을 제안한다. 본 연구의 제안모형은 비교적 높은 예측력을 나타내면서 동시에 일반화 능력이 우수한 것으로 알려진 Support Vector Machine(SVM)을 기반으로, 비대칭 오류비용을 고려한 분류기준값 최적화를 함께 반영하여 침입을 효과적으로 차단할 수 있도록 설계되었다. 제안모형의 우수성을 확인하기 위해, 기존 기법인 로지스틱 회귀분석, 의사결정나무, 인공신경망과의 결과를 비교하였으며 그 결과 제안하는 SVM 모형이 다른 기법에 비해 상대적으로 우수한 성과를 보임을 확인할 수 있었다.

RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구 (Dynamic forecasts of bankruptcy with Recurrent Neural Network model)

  • 권혁건;이동규;신민수
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.139-153
    • /
    • 2017
  • 기업의 부도는 이해관계자들뿐 아니라 사회에도 경제적으로 큰 손실을 야기한다. 따라서 기업부도예측은 경영학 연구에 있어 중요한 연구주제 중 하나로 다뤄져 왔다. 기존의 연구에서는 부도 예측을 위해 다변량판별분석, 로짓분석, 신경망분석 등 다양한 방법론을 이용하여 모형의 부도 예측력을 높이고 과적합의 문제를 해결하고자 시도하였다. 하지만 기존의 연구들이 시간적 요소를 고려하지 않아 발생할 수 있는 문제점들을 갖고 있음에도 불구하고 부도 예측에 있어서 동적 모형을 이용한 연구는 활발히 진행되고 있지 않으며 따라서 동적 모형을 이용하여 부도예측모형이 더욱 개선될 여지가 있다는 점을 확인할 수 있었다. 이에 본 연구에서는 RNN(Recurrent Neural Network)을 이용하여 시계열 재무 데이터의 동적 변화를 반영한 모형을 만들었으며 기존의 부도예측모형들과의 비교분석을 통해 부도 예측력의 향상에 도움이 된다는 것을 확인할 수 있었다. 모형의 유용성을 검증하기 위해 KIS Value의 재무 데이터를 이용하여 실험을 수행하였고 비교모형으로는 다변량판별분석, 로짓분석, SVM, 인공신경망을 선정하였다. 실험 결과 제안된 모형이 비교 모형에 비해 우수한 예측력을 보이는 것으로 나타났다. 따라서 본 연구는 변수들의 변화를 포착하는 동적 모형을 부도예측에 새롭게 제안하여 부도예측 연구의 발전에 기여할 수 있을 것으로 기대된다.

입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구 (A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection)

  • 이종식;안현철
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.147-168
    • /
    • 2017
  • 오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.

기계학습을 이용한 수출신용보증 사고예측 (The Prediction of Export Credit Guarantee Accident using Machine Learning)

  • 조재영;주지환;한인구
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 2021
  • 2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.

성범죄자와 일반범죄자의 보호관찰 경고장 관련 요인 비교 (A Study on the Violation of Probation Condition Determinants between Sex Offenders and Non-Sex Offenders)

  • 조윤오
    • 시큐리티연구
    • /
    • 제43호
    • /
    • pp.205-230
    • /
    • 2015
  • 2010년 이후부터 성범죄자 신상정보 등록기간이 20년으로 확대되는 등 지역사회 내에서 성범죄자에 대한 지도, 관리를 강화하려는 경향이 점차 뚜렷해지고 있다. 그러나 성범죄자의 범죄행동 패턴 및 인구사회학적 특징, 그리고 보호관찰 취소 요인 관련 연구는 많지 않은 상황이다. 이에 본 연구에서는 2013년에 서울보호관찰소에서 형이 종료된 성범죄자의 공식 판결문 및 보호관찰기록을 바탕으로, 성범죄자의 경고장 발송에 영향을 미치는 요인을 로지스틱 회귀분석 모델로 분석하고자 하였다. 무엇보다도 성범죄자에 대한 경고장 발송 요인이 일반범죄자의 그것과 어떻게 다른지 살펴보고 두 모델을 비교 분석하는데 연구의 초점을 두었다. 로지스틱 회귀분석 결과, 성범죄자 집단에서는 보호관찰 준수사항 위반으로 인한 경고장 발송 가능성이 과거 전과횟수에 영향을 받아 유의미하게 증가하는 것으로 나타났다. 달리 말하면, 성범죄자의 경우 인구사회학적 변인(연령, 혼인관계, 직장유형)이나 가해자-피해자 관계, 보호관찰 부가처분 등의 관련 변인이 준수사항 위반 가능성에 영향을 미치지 못하고, 오로지 성범죄자의 전과횟수만 경고장 발송 가능성을 증가시키는 것으로 볼 수 있다. 반면, 일반범죄자 집단에서는 성범죄자 모델과 달리 혼인상태나 무직 상황, 가해자-피해자 낯선 사람 관계 여부, 폭력행동 여부, 사회봉사명령 및 수강명령 부가처분 여부가 경고장 발송 가능성에 영향을 미치는 핵심 요인인 것으로 볼 수 있다. 이하 분석 결과와 관련된 정책적 논의를 심도 있게 다루어 본다.

  • PDF

신규시장 성장모형의 모수 추정을 위한 전문가 시스템 (An Expert System for the Estimation of the Growth Curve Parameters of New Markets)

  • 이동원;정여진;정재권;박도형
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.17-35
    • /
    • 2015
  • 시장 수요 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로서, 기업경영활동에 있어 효율적인 의사결정을 내릴 수 있는 근거로 활용된다는 점에서 중요하게 인식되고 있다. 신규 시장의 수요를 예측하기 위해 다양한 시장성장모형이 개발되어 왔다. 이런 모형들은 일반적으로 시장의 크기 변화의 동인을 신기술 확산으로 보고 소비자인 개인에게 기술이 확산되는 과정을 통해 시장 크기가 변하는 과정을 확산모형으로 구현하게 된다. 그러나, 시장이 형성된 직후에는 수요 관측치의 부족으로 인해 혁신계수, 모방계수와 같은 예측모형의 모수를 정확하게 추정하는 것이 쉽지 않다. 이런 경우, 전문가의 판단 하에 예측하고자 하는 시장과 유사한 시장을 결정하고 이를 참고하여 모수를 추정하게 되는데, 어떤 시장을 유사하다고 판단하느냐에 따라 성장모형은 크게 달라지게 되므로, 정확한 예측을 위해서는 유사 시장을 찾는 것은 매우 중요하다. 그러나, 이런 방식은 직관과 경험이라는 정성적 판단에 크게 의존함으로써 일관성이 떨어질 수밖에 없으며, 결국, 만족할 만한 수준의 결과를 얻기 힘들다는 단점을 지닌다. 이런 정성적 방법은 유사도가 더 높은 시장을 누락시키고 유사도가 낮은 시장을 선택하는 오류를 일으킬 수 있다. 이런 이유로, 본 연구는 신규 시장의 모수를 추정하기 위해 필요한 유사시장을 누락 없이 효과적으로 찾아낼 수 있는 사례기반 전문가 시스템을 설계하고자 수행되었다. 제안된 모형은 데이터 마이닝의 군집분석 기법과 추천 시스템의 내용 기반 필터링 방법론을 기반으로 전문가 시스템으로 구현되었다. 본 연구에서 개발된 시스템의 유용성을 확인하고자 정보통신분야 시장의 모수를 추정하는 실험을 실시하였다. 전문가를 대상으로 실시된 실험에서, 시스템을 사용한 모수의 추정치가 시스템을 사용하지 않았을 때와 비교하여 실제 모수와 더 가까움을 보임으로써 시스템의 유용성을 증명하였다.

인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝 (Clickstream Big Data Mining for Demographics based Digital Marketing)

  • 박지애;조윤호
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.143-163
    • /
    • 2016
  • 인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.

경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발 (Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique)

  • 김명균;조윤호
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.59-77
    • /
    • 2012
  • 기업의 성장성, 수익성, 안정성, 활동성, 생산성 등에 대한 다양한 분석이 은행, 신용평가기관, 투자자 등 많은 이해관계자에 의해 실시되고 있고, 이에 대한 다양한 경영분석 지표들 또한 정기적으로 발표되고 있다. 본 연구에서는 이러한 경영분석 지표를 이용하여 어떤 기업이 가까운 미래에 유상증자를 실시하는지를 데이터마이닝을 통해 예측하고자 한다. 본 연구를 통해 어떠한 지표가 유상증자 여부를 예측하는데 도움이 되는가를 살펴 볼 것이며, 그 지표들을 이용하여 예측할 경우 그 예측의 정확도가 어느 정도인지를 분석하고자 한다. 특히 1997년 IMF 금융위기 전후로 유상증자를 결정하는 변수들이 변화하는지, 그리고 예측의 정확성에 분명한 차이가 존재하는지 분석한다. 또한 유상증자 실시 시기를 경영분석 지표 발표 후 1년 내, 1~2년 내, 2~3년 내로 나누어 예측 시기에 따라 예측의 정확성과 결정 변수들의 차이가 존재하는지도 분석한다. 658개의 유가증권상장법인의 경영분석 데이터를 이용하여 실증 분석한 결과, IMF 이후의 유상증자 예측모형이 IMF 이전의 예측모형에 비해 예측 정확도가 높았고, 학습용 데이터의 예측 정확도와 검증용 데이터의 예측 정확도 차이도 IMF 이후가 낮게 나타났다. 이러한 결과는 IMF 이후 재무자료의 정확도가 높아졌고, 기업에게 유상증자의 목적이 더욱 명확해졌다고 해석될 수 있다. 또한 예측기간이 단기인 경우 경영분석 지표 중 안전성에 관련된 지표들의 중요성이 부각되었고, 장기인 경우에는 수익성과 안전성뿐만 아니라 활동성과 생산성 관련지표도 유상증자를 예측하는 데 중요한 것으로 파악되었다. 그리고 모든 예측모형에서 산업코드가 유상증자를 예측하는 중요변수로 포함되었는데 이는 산업별로 서로 다른 유상증자 유형이 존재한다는 점을 시사한다. 본 연구는 투자자나 재무담당자가 유상증자 여부를 장단기 시점에서 예측하고자 할 때 어떠한 경영분석지표를 고려하여 분석하는 것이 바람직한지에 대한 지침을 제공하는데 그 의의가 있다.

대기오염에 의한 폐암 및 만성폐색성호흡기질환 -개인 흡연력을 보정한 만성건강영향평가- (Lung cancer, chronic obstructive pulmonary disease and air pollution)

  • 성주헌;조수헌;강대희;유근영
    • Journal of Preventive Medicine and Public Health
    • /
    • 제30권3호
    • /
    • pp.585-598
    • /
    • 1997
  • Background : Although there are growing concerns about the adverse health effect of air pollution, not much evidence on health effect of current air pollution level had been accumulated yet in Korea. This study was designed to evaluate the chronic health effect of ai. pollution using Korean Medical Insurance Corporation (KMIC) data and air quality data. Medical insurance data in Korea have some drawback in accuracy, but they do have some strength especially in their national coverage, in having unified ID system and individual information which enables various data linkage and chronic health effect study. Method : This study utilized the data of Korean Environmental Surveillance System Study (Surveillance Study), which consist of asthma, acute bronchitis, chronic obstructive pulmonary diseases (COPD), cardiovascular diseases (congestive heart failure and ischemic heart disease), all cancers, accidents and congenital anomaly, i. e., mainly potential environmental diseases. We reconstructed a nested case-control study wit5h Surveillance Study data and air pollution data in Korea. Among 1,037,210 insured who completed? questionnaire and physical examination in 1992, disease free (for chronic respiratory disease and cancer) persons, between the age of 35-64 with smoking status information were selected to reconstruct cohort of 564,991 persons. The cohort was followed-up to 1995 (1992-5) and the subjects who had the diseases in Surveillance Study were selected. Finally, the patients, with address information and available air pollution data, left to be 'final subjects' Cases were defined to all lung cancer cases (424) and COPD admission cases (89), while control groups are determined to all other patients than two case groups among 'final subjects'. That is, cases are putative chronic environmental diseases, while controls are mainly acute environmental diseases. for exposure, Air quality data in 73 monitoring sites between 1991 - 1993 were analyzed to surrogate air pollution exposure level of located areas (58 areas). Five major air pollutants data, TSP, $O_3,\;SO_2$, CO, NOx was available and the area means were applied to the residents of the local area. 3-year arithmetic mean value, the counts of days violating both long-term and shot-term standards during the period were used as indices of exposure. Multiple logistic regression model was applied. All analyses were performed adjusting for current and past smoking history, age, gender. Results : Plain arithmetic means of pollutants level did not succeed in revealing any relation to the risk of lung cancer or COPD, while the cumulative counts of non-at-tainment days did. All pollutants indices failed to show significant positive findings with COPD excess. Lung cancer risks were significantly and consistently associated with the increase of $O_3$ and CO exceedance counts (to corrected error level -0.017) and less strongly and consistently with $SO_2$ and TSP. $SO_2$ and TSP showed weaker and less consistent relationship. $O_3$ and CO were estimated to increase the risks of lung cancer by 2.04 and 1.46 respectively, the maximal probable risks, derived from comparing more polluted area (95%) with cleaner area (5%). Conclusions : Although not decisive due to potential misclassication of exposure, these results wert drawn by relatively conservative interpretation, and could be used as an evidence of chronic health effect especially for lung cancer. $O_3$ might be a candidate for promoter of lung cancer, while CO should be considered as surrogated measure of motor vehicle emissions. The control selection in this study could have been less appropriate for COPD, and further evaluation with another setting might be necessary.

  • PDF

주부의 식품안전에 대한 인식과 안전성우려의 관련 요인 (Consumer Perceptions of Food-Related Hazards and Correlates of Degree of Concerns about Food)

  • 최정숙;전혜경;황대용;남희정
    • 한국식품영양과학회지
    • /
    • 제34권1호
    • /
    • pp.66-74
    • /
    • 2005
  • 전국의 대도시, 중소도시, 읍면지역의 주부 100명을 대상으로 구조화된 설문지를 이용하여 전화면접조사를 실시하였다. 식품안전에 대하여 불안을 느끼는 사람이 55.4%, 불안을 느끼지 않는 사람이 34.6%로 식품안전성에 대해 불안을 느끼는 사람의 비율이 1.9배 높은 것으로 나타났다. 식품안전에 대한 불안감에 영향을 미치는 요인은 유아나 초등학생의 자녀여부, 학력, 채소류 구입 장소, 브랜드, 보존료나 착색료 등의 식품첨가물, 원재료의 원산지 등이었다. 불안요인 중 잔류농약은 대상자의 96.0%가, 보존료나 착색료 등 식품첨가물 95.7%, 환경호르몬 93.0%, 식중독균 등 유해 미생물 91.7%, 유전가변형식품은 90.2%가 불안을 느끼는 것으로 나타났다. 그러나 실제로는 잔류농약이나 식품첨가물보다 미생물의 발생으로 인한 식품오염으로 나타날 수 있는 식중독의 경우 더욱 치명적일 수 있으므로 이러한 사실을 일반 소비자들에게 인식시킬 필요가 있다. 불안을 느끼는 식품으로, 도시락은 대상자의 93.3%가, 수입 식품은 92.7%, 패스트푸드 89.9%, 햄과 소시지 등 식육가공식품 88.7%, 외식(패스트푸드 이외의 식품) 81.6%, 통조림과 냉동식품 등 가공식품 83.5%, 컵라면 등 인스턴트식품 82.0%, 쌀 47.4%, 식용유 53.8%, 우유 및 유제품은 56.6%가 불안하다고 느꼈다. 식품의 제조(재배) 및 원료(원산지)를 제시해주는 식품표시에 대하여 신뢰하지 못하고 불안을 느끼는 대상자가 많으므로(75.2%) 표시 제도와 인증제도의 적절한 운용을 통해 식품에 관련한 충분한 정보가 소비자들에게 전달될 수 있는 대책이 강구되어야 하겠다. 신선식품(농축산물)구입시 가장 우려되며 우선적으로 고려하는 사항은 '수입산인지 국내산인지'이었으며 '유통기한', '무농약 및 유기재배 여부', '만질 때 혹은 외관상으로 느껴지는 신선함' 등이 그 다음으로 고려하는 것으로 나타났다. 가공식품 구입시에는 '보존료 및 착색료 등의 식품첨 가물'(93.6%), '유통기한'(92.4%), '원재료가 무농약$.$유기재배인지'(88.8%)에 대하여 염려된다고 응답한 비율이 높았다. 식품안전을 확보하기 위한 식품생산에서 소비단계까지 개선사항으로 '비료, 농약 살포, 수확시 관리 등 생산단계'(59.6%) 및 '물, 토양, 대기 등 자연환경'(43.6%)의 개선이 중요하다는 견해가 많았다. 위의 결과로 볼 때 식품안전성을 확보하기 위해서는 식품위생과 안전성, 식품표시에 대한 홍보와 교육이 지속적으로 이루어져 소비자들의 식품안전에 대한 인식과 신뢰도를 높여야 할 것이다. 농장단계에서 오염원을 줄이는 방안이 최종생산물의 검사에 기반을 둔 식품안전정책보다도 안전성 확보에 훨씬 유효하다는 사고방식이 보편화되고 있으므로 농산물 생산단계에 우수농산물관리 제도(good agricultural practices)를 정착시키고, 나아가 사전예방 원칙을 적용한 HACCP 시스템을 도입하여 식품(특히 축산물)의 안전성을 확보하여야 하겠다. 또 food chain 전반에 관한 이력정보의 부족과 정보의 신뢰성이 문제가 되므로 생산단계부터 가공단계, 유통단계, 그리고 판매 단계 에 이르기까지의 모든 과정을 소비자가 역으로 거슬러 올라가 확인할 수 있는 '이력정보체계 (traceability system)'를 활성화하여야 하겠다.