• Title/Summary/Keyword: Information Error

Search Result 11,146, Processing Time 0.035 seconds

Modeling for Egg Price Prediction by Using Machine Learning (기계학습을 활용한 계란가격 예측 모델링)

  • Cho, Hohyun;Lee, Daekyeom;Chae, Yeonghun;Chang, Dongil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.15-17
    • /
    • 2022
  • In the aftermath of the avian influenza that occurred from the second half of 2020 to the beginning of 2021, 17.8 million laying hens were slaughtered. Although the government invested more than 100 billion won for egg imports as a measure to stabilize prices, the effort was not that easy. The sharp volatility of egg prices negatively affected both consumers and poultry farmers, so measures were needed to stabilize egg prices. To this end, the egg prices were successfully predicted in this study by using the analysis algorithm of a machine learning regression. For price prediction, a total of 8 independent variables, including monthly broiler chicken production statistics for 2012-2021 of the Korean Poultry Association and the slaughter performance of the national statistics portal (kosis), have been selected to be used. The Root Mean Square Error (RMSE), which indicates the difference between the predicted price and the actual price, is at the level of 103 (won), which can be interpreted as explaining the egg prices relatively well predicted. Accurate prediction of egg prices lead to flexible adjustment of egg production weeks for laying hens, which can help decision-making about stocking of laying hens. This result is expected to help secure egg price stability.

  • PDF

Radar-based rainfall prediction using generative adversarial network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측)

  • Yoon, Seongsim;Shin, Hongjoon;Heo, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.471-484
    • /
    • 2023
  • Deep learning models based on generative adversarial neural networks are specialized in generating new information based on learned information. The deep generative models (DGMR) model developed by Google DeepMind is an generative adversarial neural network model that generates predictive radar images by learning complex patterns and relationships in large-scale radar image data. In this study, the DGMR model was trained using radar rainfall observation data from the Ministry of Environment, and rainfall prediction was performed using an generative adversarial neural network for a heavy rainfall case in August 2021, and the accuracy was compared with existing prediction techniques. The DGMR generally resembled the observed rainfall in terms of rainfall distribution in the first 60 minutes, but tended to predict a continuous development of rainfall in cases where strong rainfall occurred over the entire area. Statistical evaluation also showed that the DGMR method is an effective rainfall prediction method compared to other methods, with a critical success index of 0.57 to 0.79 and a mean absolute error of 0.57 to 1.36 mm in 1 hour advance prediction. However, the lack of diversity in the generated results sometimes reduces the prediction accuracy, so it is necessary to improve the diversity and to supplement it with rainfall data predicted by a physics-based numerical forecast model to improve the accuracy of the forecast for more than 2 hours in advance.

Optimization-based Deep Learning Model to Localize L3 Slice in Whole Body Computerized Tomography Images (컴퓨터 단층촬영 영상에서 3번 요추부 슬라이스 검출을 위한 최적화 기반 딥러닝 모델)

  • Seongwon Chae;Jae-Hyun Jo;Ye-Eun Park;Jin-Hyoung, Jeong;Sung Jin Kim;Ahnryul Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.331-337
    • /
    • 2023
  • In this paper, we propose a deep learning model to detect lumbar 3 (L3) CT images to determine the occurrence and degree of sarcopenia. In addition, we would like to propose an optimization technique that uses oversampling ratio and class weight as design parameters to address the problem of performance degradation due to data imbalance between L3 level and non-L3 level portions of CT data. In order to train and test the model, a total of 150 whole-body CT images of 104 prostate cancer patients and 46 bladder cancer patients who visited Gangneung Asan Medical Center were used. The deep learning model used ResNet50, and the design parameters of the optimization technique were selected as six types of model hyperparameters, data augmentation ratio, and class weight. It was confirmed that the proposed optimization-based L3 level extraction model reduced the median L3 error by about 1.0 slices compared to the control model (a model that optimized only 5 types of hyperparameters). Through the results of this study, accurate L3 slice detection was possible, and additionally, we were able to present the possibility of effectively solving the data imbalance problem through oversampling through data augmentation and class weight adjustment.

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

A Study on Automated Input of Attribute for Referenced Objects in Spatial Relationships of HD Map (정밀도로지도 공간관계 참조객체의 속성 입력 자동화에 관한 연구)

  • Dong-Gi SUNG;Seung-Hyun MIN;Yun-Soo CHOI;Jong-Min OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.29-40
    • /
    • 2024
  • Recently, the technology of autonomous driving, one of the core of the fourth industrial revolution, is developing, but sensor-based autonomous driving is showing limitations, such as accidents in unexpected situations, To compensate for this, HD-map is being used as a core infrastructure for autonomous driving, and interest in the public and private sectors is increasing, and various studies and technology developments are being conducted to secure the latest and accuracy of HD-map. Currently, NGII will be newly built in urban areas and major roads across the country, including the metropolitan area, where self-driving cars are expected to run, and is working to minimize data error rates through quality verification. Therefore, this study analyzes the spatial relationship of reference objects in the attribute structuring process for rapid and accurate renewal and production of HD-map under construction by NGII, By applying the attribute input automation methodology of the reference object in which spatial relations are established using the library of open source-based PyQGIS, target sites were selected for each road type, such as high-speed national highways, general national highways, and C-ITS demonstration sections. Using the attribute automation tool developed in this study, it took about 2 to 5 minutes for each target location to automatically input the attributes of the spatial relationship reference object, As a result of automation of attribute input for reference objects, attribute input accuracy of 86.4% for high-speed national highways, 79.7% for general national highways, 82.4% for C-ITS, and 82.8% on average were secured.

Allometric equation for estimating aboveground biomass of Acacia-Commiphora forest, southern Ethiopia

  • Wondimagegn Amanuel;Chala Tadesse;Moges Molla;Desalegn Getinet;Zenebe Mekonnen
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.196-206
    • /
    • 2024
  • Background: Most of the biomass equations were developed using sample trees collected mainly from pan-tropical and tropical regions that may over- or underestimate biomass. Site-specific models would improve the accuracy of the biomass estimates and enhance the country's measurement, reporting, and verification activities. The aim of the study is to develop site-specific biomass estimation models and validate and evaluate the existing generic models developed for pan-tropical forest and newly developed allometric models. Total of 140 trees was harvested from each diameter class biomass model development. Data was analyzed using SAS procedures. All relevant statistical tests (normality, multicollinearity, and heteroscedasticity) were performed. Data was transformed to logarithmic functions and multiple linear regression techniques were used to develop model to estimate aboveground biomass (AGB). The root mean square error (RMSE) was used for measuring model bias, precision, and accuracy. The coefficient of determination (R2 and adjusted [adj]-R2), the Akaike Information Criterion (AIC) and the Schwarz Bayesian information Criterion was employed to select most appropriate models. Results: For the general total AGB models, adj-R2 ranged from 0.71 to 0.85, and model 9 with diameter at stump height at 10 cm (DSH10), ρ and crown width (CW) as predictor variables, performed best according to RMSE and AIC. For the merchantable stem models, adj-R2 varied from 0.73 to 0.82, and model 8) with combination of ρ, diameter at breast height and height (H), CW and DSH10 as predictor variables, was best in terms of RMSE and AIC. The results showed that a best-fit model for above-ground biomass of tree components was developed. AGBStem = exp {-1.8296 + 0.4814 natural logarithm (Ln) (ρD2H) + 0.1751 Ln (CW) + 0.4059 Ln (DSH30)} AGBBranch = exp {-131.6 + 15.0013 Ln (ρD2H) + 13.176 Ln (CW) + 21.8506 Ln (DSH30)} AGBFoliage = exp {-0.9496 + 0.5282 Ln (DSH30) + 2.3492 Ln (ρ) + 0.4286 Ln (CW)} AGBTotal = exp {-1.8245 + 1.4358 Ln (DSH30) + 1.9921 Ln (ρ) + 0.6154 Ln (CW)} Conclusions: The results demonstrated that the development of local models derived from an appropriate sample of representative species can greatly improve the estimation of total AGB.

Annotation-guided Code Partitioning Compiler for Homomorphic Encryption Program (지시문을 활용한 동형암호 프로그램 코드 분할 컴파일러)

  • Dongkwan Kim;Yongwoo Lee;Seonyoung Cheon;Heelim Choi;Jaeho Lee;Hoyun Youm;Hanjun Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.291-298
    • /
    • 2024
  • Despite its wide application, cloud computing raises privacy leakage concerns because users should send their private data to the cloud. Homomorphic encryption (HE) can resolve the concerns by allowing cloud servers to compute on encrypted data without decryption. However, due to the huge computation overhead of HE, simply executing an entire cloud program with HE causes significant computation. Manually partitioning the program and applying HE only to the partitioned program for the cloud can reduce the computation overhead. However, the manual code partitioning and HE-transformation are time-consuming and error-prone. This work proposes a new homomorphic encryption enabled annotation-guided code partitioning compiler, called Heapa, for privacy preserving cloud computing. Heapa allows programmers to annotate a program about the code region for cloud computing. Then, Heapa analyzes the annotated program, makes a partition plan with a variable list that requires communication and encryption, and generates a homomorphic encryptionenabled partitioned programs. Moreover, Heapa provides not only two region-level partitioning annotations, but also two instruction-level annotations, thus enabling a fine-grained partitioning and achieving better performance. For six machine learning and deep learning applications, Heapa achieves a 3.61 times geomean performance speedup compared to the non-partitioned cloud computing scheme.

Investigation of the Effects of Wavelength Range and Absorption Cross-Section on Sulfur Dioxide Slant Column Density Retrieval Using Ground-Based UV Scattered Sunlight Measurement (지상 기반 태양 UV 산란광 관측을 이용한 이산화황 경사칼럼농도 산출 시 파장 구간 및 흡수단면적에 따른 영향 조사)

  • Gyeong Park;Buju Gong;Minji Kim;Hanlim Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.377-385
    • /
    • 2024
  • We investigated the effect of spectral fitting wavelength interval variations and selection of absorption cross-section on the sulfur dioxide slant column density (SCD) retrievals from the scattered sunlight observation using a UV-Vis hyperspectral instrument. The sulfur dioxide slant column densities were retrieved from the combinations of multiple spectral fitting intervals and absorption cross-sections. The observation was carried out at the site 0.53 km away from a combustion site located in Gimhae from December 1, 2023, to January 23, 2024. The radiances were obtained on the line of measurement sight toward the stack of the combustion facility. The best spectral fitting intervals were found to be from 305.7 to 321.1 nm. In terms of the absorption cross-section dependency, the SO2 (293 K), O3 (223 K, 243 K) show the best spectral fitting for the observed radiances with both the smallest fitting residual and SCD error. The effects of the fitting interval and cross sections found in this study can be useful information for improving SO2 retrievals based on UV hyperspectral measurements.

A Study on Retrieval of Storage Heat Flux in Urban Area (우리나라 도심지에서의 저장열 산출에 관한 연구)

  • Lee, Darae;Kim, Honghee;Lee, Sang-Hyun;Lee, Doo-Il;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Lee, Kyeong-sang;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.301-306
    • /
    • 2018
  • Urbanization causes urban floods and urban heat island in the summer, so it is necessary to understanding the changes of the thermal environment through urban climate and energy balance. This can be explained by the energy balance, but in urban areas, unlike the typical energy balance, the storage heat flux saved in the building or artificial land cover should be considered. Since the environment of each city is different, there is a difficulty in applying the method of retrieving the storage heat flux of the previous research. Especially, most of the previous studies are focused on the overseas cities, so it is necessary to study the storage heat retrieval suitable for various land cover and building characteristics of the urban areas in Korea. Therefore, the object of this study, it is to derive the regression formula which can quantitatively retrieve the storage heat using the data of the area where various surface types exist. To this end, nonlinear regression analysis was performed using net radiation and surface temperature data as independent variables and flux tower based storage heat estimates as dependent variables. The retrieved regression coefficients were applied to each independent variable to derive the storage heat retrieval regression formula. As a result of time series analysis with flux tower based storage heat estimates, it was well simulated high peak at day time and the value at night. Moreover storage heat retrieved in this study was possible continuous retrieval than flux tower based storage heat estimates. As a result of scatter plot analysis, accuracy of retrieved storage heat was found to be significant at $50.14Wm^{-2}$ and bias $-0.94Wm^{-2}$.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.