• Title/Summary/Keyword: Information Collection Interval

Search Result 34, Processing Time 0.024 seconds

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

Generation of Mosaic Image using Aerial Oblique Images (경사사진을 이용한 모자이크 영상 제작)

  • Seo, Sang Il;Park, Byung-Wook;Lee, Byoung Kil;Kim, Jong In
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.145-154
    • /
    • 2014
  • The road network becomes more complex and extensive. Therefore, the inconveniences are caused in accordance with the time delay of the restoration of damaged roads, demands for excessive costs on information collection, and limitations on acquisition of damage information of the roads. Recently, road centric spatial information is gathered using mobile multi sensor system for road inventory. But expensive MMS(Mobile Mapping System) equipments require high maintenance costs from beginning and takes a lot of time in the data processing. So research is needed for continuous maintenance by collecting and displaying the damaged information on a digital map using low cost mobile camera system. In this research we aim to develop the techniques for mosaic with a regular ground sample distance using successive image from oblique camera on a vehicle. For doing this, mosaic image is generated by estimating the homography of high resolution oblique image, and the ground sample distance and appropriate overlap are analyzed using high resolution aerial oblique images which contain resolution target. Based on this we have proposed the appropriate overlap and exposure interval for mobile road inventory system.

Usability of a smartphone food picture app for assisting 24-hour dietary recall: a pilot study

  • Hongu, Nobuko;Pope, Benjamin T.;Bilgic, Pelin;Orr, Barron J.;Suzuki, Asuka;Kim, Angela Sarah;Merchant, Nirav C.;Roe, Denise J.
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.207-212
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: The Recaller app was developed to help individuals record their food intakes. This pilot study evaluated the usability of this new food picture application (app), which operates on a smartphone with an embedded camera and Internet capability. SUBJECTS/METHODS: Adults aged 19 to 28 years (23 males and 22 females) were assigned to use the Recaller app on six designated, nonconsecutive days in order to capture an image of each meal and snack before and after eating. The images were automatically time-stamped and uploaded by the app to the Recaller website. A trained nutritionist administered a 24-hour dietary recall interview 1 day after food images were taken. Participants' opinions of the Recaller app and its usability were determined by a follow-up survey. As an evaluation indicator of usability, the number of images taken was analyzed and multivariate Poisson regression used to model the factors determining the number of images sent. RESULTS: A total of 3,315 food images were uploaded throughout the study period. The median number of images taken per day was nine for males and 13 for females. The survey showed that the Recaller app was easy to use, and 50% of the participants would consider using the app daily. Predictors of a higher number of images were as follows: greater interval (hours) between the first and last food images sent, weekend, and female. CONCLUSIONS: The results of this pilot study provide valuable information for understanding the usability of the Recaller smartphone food picture app as well as other similarly designed apps. This study provides a model for assisting nutrition educators in their collection of food intake information by using tools available on smartphones. This innovative approach has the potential to improve recall of foods eaten and monitoring of dietary intake in nutritional studies.

A Study on Optimal Traffic Detection Systems by Introduction of Section Detection System (구간검지체계 도입을 통한 교통검지체계 설치기준 연구)

  • Kim, Nak-Joo;Lee, Seung-Jun;Oh, Sei-Chang;Son, Young-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.47-63
    • /
    • 2011
  • A traffic detection system can be deemed as a traffic data and information collection system to serve traffic policies, traffic management, and user services. The system plays a crucial role in verifying whether or not the current traffic system has issues or problems by checking out traffic data. In addition, the system does so in finding out a point or a section where an issue or a problem has occurred, if any, and in examining the causes of the issue or problem, the extent of its impact that has occurred and spread, and a method for resolving it. However, the existing point detection system of Korea has too many flaws. In order to fix the flaws, in this paper, the theoretical characteristics of the section detection system were researched in relation to the calculation of travel time. In addition, the travel time of probe cars was obtained by field survey, and it was compared to that of spot and section detection data. Then, simulation was performed to determine the optimal section detection interval. In conclusion, introduction of optimal section detection system was examined in order to achieve the advanced road management including traffic policy, traffic management, and user services.