• Title/Summary/Keyword: Influent and effluent

Search Result 364, Processing Time 0.028 seconds

A Study on Energy Saving Effect from Automatic Control of Air Flowrate and Estimation of Optimal DO Concentration in Oxic Reactor of Wastewater Treatment Plant (하수처리장의 포기조 최적 DO 농도 산정 및 공기송풍량 자동제어를 통한 에너지 절감 효과 도출)

  • Kim, Min Han;Ji, Seung Hee;Jang, Jung Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • It is important to keep stable effluent water quality and minimize operation cost in biological wastewater treatment plant. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. For optimal control, The oxygen uptake rate (OUR) is realtime measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO seT-Point needed for the microorganism is suggested based on real time measurement of oxygen uptake of microorganism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal setpoint decision system by providing the necessary oxygen supply requirement to the microorganisms coping with the variations of influent loading.

Evaluation of Affecting Factors on N and P removal in Biological SND (Simultaneous Nitrification and Denitrification) Process with NADH Sensor (NADH 센서를 이용한 생물학적 동시 탈질.질산화공정에서 질소, 인제거 영향인자 및 거동 평가)

  • Kim, Han-Lae;Lee, Si-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.374-381
    • /
    • 2008
  • In this study, the factors affecting biological N and P removal using SND (simultaneous nitrification and denitrification) process were investigated and evaluated to examine the possibility of treating N and P through SND with NADH by surveying N and P traces in an aeration tank. Variations of $NH_4^+$-N+$NO_3^-$-N concentration were used to estimate the degree of SND in each point (P2, P3, P4, P5) of the aeration tank and these variations showed that denitrification efficiency in P2 (front zone), nitrification and denitrification efficiencies in P4 (middle zone) were 67%, 86% and 39%, respectively. When $PO_4^{-3}$-P concentration was analyzed in each point of the aeration tank, it was shown that $PO_4^{-3}$-P concentration coming into P2 was 1.25 mg/L, which increased to 2.22 mg/L by P release in P2 zone and then decreased to 0.74 mg/L by P uptake in P4. Consequently, we were able to estimate which high P removal efficiency observed in this study was caused by biological phosphorus removal. To determine the operating factors affecting effluent T-N, we analyzed the correlation among FN/M ratio, C/N ratio, Temp., SRT etc and these results showed that the correlation among FN/M ratio, C/N ratio and Temp was not high. However, the relationship of SRT and other parameters (effluent $NH_4^+$-N and effluent BOD) and the short SRT could have an affect on effluent $NH_4^+$-N and so effluent BOD could be increased. Thus, SRT operation should be controlled over 10 days. The results for analyzing the correlation between SRT and influent $NO_3^-$-N in order to investigate the operating factors affecting effluent T-P showed that T-P or $PO_4^{-3}$-P was not highly correlation with SRT, whereas $PO_4^{-3}$-P concentration increased along with increasing $NO_3^-$-N concentration into P2. Based on these results, we concluded, using regression analysis (R2=0.97), that effluent $PO_4^{-3}$-P concentration depends on $NO_3^-$-N concentration into P2.

A Study on the treatment efficiency of A2O Process coupled with Mesh Screening Reactor (Mesh Screening Reactor와 결합된 A2O 공정의 처리효율에 관한 연구)

  • Whang, Gye-Dae;Lim, Dong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.705-714
    • /
    • 2008
  • Three Mesh Screenning Reactors (MSRs) were operated in three different modes to investigate the effect of the mesh opening size and the filtrate flux on the removal of particulate matters and the production of soluble organic matters. The mesh opening size was $82{\mu}m$ (Mode 1), $61{\mu}m$ (Mode 2) and $38{\mu}m$ (Mode 3), respectively, and each mode has three different filtrate flux; $0.47m^3/m^2/d$, $0.95m^3/m^2/d$ and $1.42m^3/m^2/d$, respectively. TSS removal efficiency of mode 1, 2, and 3 fed with 191 mgTSS/L was 27%, 36%, and 60%, respectively. The SCOD concentration of 91mg/L in influent for the mode 1, 2, and 3 increased to 117 mg/L, 127 mg/L, and 155 mg/L, respectively. For the all MSRs, there was no significant effect of filtrate flux on the removal of particulate matters and the production of soluble organic matters. However, the mesh opening size greatly affected the removal of particulate matters and the production of soluble organic matters in wastewater. Three parallel A2O processes consisting of anaerobic, anoxic and aerobic reactors maintaining mixed liquor suspended solids (MLSS) of 3,000 mg/L were operated to investigate the effectiveness of MSR on the removal efficiencies of the organic matters, nitrogen, and phosphorus; MSR influent was introduced to System 1 (183 mgTSS/L, 324 mgTCOD/L, 87 mgSCOD/L, 45.2 mgTKN/L, and 6.6 mgTP/L) and MSR efluent was introduced to System 2 and 3(72 mgTSS/L, 289 mgTCOD/L, 141 mgSCOD/L, 40.2 mgTKN/L, and 4.2 mgTP/L). HRTs of the anaerobic reactors in systems 1, 2 and 3 were 1 h, 1 h and 0.6 h, respectively and anoxic reactors were 2 h in all systems. HRTs of the aerobic reactors in systems 1, 2 and 3 were 5 h, 3 h and 3 h, respectively. TSS concentration in effluent of both system 2 and 3 is about 8 mg/L and lower than that of system 1 effluent. Despite higher TCOD loading and SCOD loading, both Systems 2 and 3 had a greater TCOD and SCOD removal efficiency at 91% and 92% than System 1 was at 88% and 82%, respectively. The nitrification efficiency for system 2 was greater than observed for System 1 (99% verses 97%). The denitrification efficiency for systems 1, 2 and 3 was 78%, 88% and 87%, respectively. System 2 and 3 showed about 12% higher TN removal efficiency than system 1 (85% verses 73%). The effluent TP concentration for system 2 was less than observed for system 1 and 3.

Methane Production by Anaerobic Digestion of Grain Dust in a Plug Flow Digester (플러그 흐름 소화기 속에서 Grain Dust의 혐기성 소화에 의한 메탄가스 생산)

  • Tae-Kyung Yoon;Sung-Bum Han;Moon-Ki Park;Seung-Koo Song
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.311-316
    • /
    • 1993
  • Methane production from grain dust was studied using a 3 L laboratory-scale anaerobic plug flow digester. The digester was operated at; temperature of 35, 45, and 55$^{\circ}C$; hydraulic retention time(HRT) of 6 and 12 days; and influent concentration($S_o$) of 7.8 and 9.0 % total solids(%TS). With ten different operation conditions, this study showed the significant effects of temperature, hydraulic retention time, and influent concentration on methane production. The highest methane-production rate achieved was 1.903 (L methane) /(L digester)(day) at 55$^{\circ}C$, 6 days HRT, and $S_0$ of 7.8 %TS. A total of 3.767 L of biogas per day with a methane content of 50.57 % was obtained from this condition. The ultimate methane yield($B_0$) was found to be a function of temperature and influent concentration, and was described as : $B_0$ = 0.02907T-0.1263-0.00297(T-10)(%TS), where TS is the total solids in the liquid effluent, and T is temperature($^{\circ}C$). Our results showed that thermophilic condition is better than mesophilic for grain dust stabilization in an anaerobic plug flow digester.

  • PDF

Anaerobic Digestion of Distillery Wastewater in a Two-phase UASB System (이상 UASB 공정을 이용한 주정폐수의 혐기성소화)

  • Shin, Hang Sik;Bae, Byung Uk;Paik, Byung Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.185-192
    • /
    • 1990
  • A two-phase UASB system was operated for high-rate treatment of concentrated distillery wastewater. The phase separation was obtained by adjusting pH in each reactor. When influent SS concentration was 4.1/g/l, the first phase UASB reactor was effectively operated up to the loading rate of 16.5kg $COD/m^3.day$, producing 3.9g HAc/l.day. In the methanogenic UASB reactor, loading rate up to 44kg $COD/m^3.day$ could be applied while removing 80% of influent COD with a specific gas production of 16.5 l/l. day. After the formation granular sludge in both reactors, it was possible to maintain the appropriate pH in the first phase only by recirculating the effluent from methanogenic phase without the addition of alkaline chemicals.

  • PDF

Hydrogen and Methane Production from Mixture of Food Wastewater and Swine Wastewater using Two-Phase Anaerobic Process (이상 혐기성 공정을 이용한 음식물류폐기물폐수와 양돈폐수의 혼합액으로부터 수소 및 메탄 생산)

  • Kim, Choong-Gon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • This study has been conducted to derive the bio-energy, hydrogen and methane production, from mixture of food wastewater and swine wastewater, the high strength organic wastewater and to increase effluent quality. To overcome this limitation in one-phase anaerobic process, two-phase anaerobic process combining hydrogen fermenter and methane fermenter was applied. In this system $2,323ml\;H_2/L$ was produced daily from Run II where 500 ml of heattreated sludge in methane fermenter was injected, and methane produced from methane fermenter did not show big difference regardless of the amount of returning sludge at each Run. It was concluded that the two-phase anaerobic process was the appropriat process to produce hydrogen and methane simultaneously and stably. Influent $TCOD_{Cr}$ to two-phase anaerobic process showed the range of 132~145 g/L(average 140 g/L), and effluent $TCOD_{Cr}$ range was 25~40 g/L(average 32 g/L), and organic removal efficiency showed 71~82%(average 76.3%).

The Effect of HRT and SRT on Treatment Efficiency of Activated Sludge Process for Low Concentration Municipal Sewage (저농도 도시하수 처리를 위한 활성슬러지공정에서 HRT 및 SRT가 처리효율에 미치는 영향)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae Bom
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.64-73
    • /
    • 1997
  • Most of the municipal wastewater treatment plants operated in Korea are designed for high concentrations municipal sewage. However, activated sludge process employed by municipal wastewater treatment plant is operated at low organic loading. The objective of this study was to determine optimum operating condition of activated sludge process for treatment of low concentration municipal sewage. Three bench scale activated sludge reactors were operated to investigate the effect of HRT and SRT on the COD and TSS removal efficiency. The average concentration of TSS, SCOD, SBOD and TKN in influent were 118mg/l, 61mg/l, 21mg/l, and 12mg/l, respectively. The activated sludge reactors operated with various HRT and SRT showed about 89-93% TSS removal efficiency. HRT and SRT does not affect the TSS removal efficiency of actvatied sludge process significantly. However, HRT affected the SCOD removal efficiency slightly. As the HRT decreases from 13hours to 3hours, the SCOD removal efficiency decreases from 67% to 56%. The average effluent TCOD concentration of the reactor operated with 3hours of HRT was approximatly 40-45mg/l. Kinetic coefficient yield (Yt) and decay coefficients(Kd) were 0.594-0.954 mgMLVSS/mgCOD and $0.0197-0.0317day^{-1}$, respectively. Low concentration municipal sewage can be treated with 3 hours of HRT without effluent quality deterioration and SRT does not affect the substrate removal efficiency at this operation condition.

  • PDF

Measures to improve water quality of Lake Euiam by controlling the incoming pollutants to the lake (의암호에 유입되는 오염물질 관리를 통한 호소 수질개선 방안)

  • Hwang, Hwan-Min;Yi, Geon-Ho;Kim, Mi-Yeon;Kim, Dong-Jin;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.783-790
    • /
    • 2011
  • The purpose of this study was to suggest the alternative measures to properly manage the water quality of Lake Euiam, Chuncheon. Current pollution level of Gongji stream (influent to Lake Euiam) and sources of contamination in Lake Euiam were investigated. Particle size, organic matter and nutrient contents, heavy metals were analyzed for sediment samples taken from lower region of Gongji stream. Average organic matter content of nine sediment samples was 5.7%, and for nitrogen and phosphorus it was 750 mg/kg and 977mg/kg, respectively. Heavy metals including aluminum, iron, manganese and zinc were measured, whereas Cd and As were not detected. Effluent from Chuncheon Wastewater Treatment Plant appeared to be one of the main cause of organic matter and nutrients level in Lake Euiam. Inhibition of primary production and consequent reduction of organic matter content within the Lake should be a key measure to protect the water quality of Lake Euiam. Preventive measures to reduce the level of nutrients in wastewater treatment effluent were found necessary.

Nitrogen Removal from Wastewater by a Multi-stage Bio-reactor (다단 생물반응기에 의한 질소제거)

  • 최규철;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.91-103
    • /
    • 1998
  • Design data for COD and nitrogen removal from wastewater were collected from Pilot's Multi-stage Bio-reactor. Hyraulic conditions and pollutant loadings were varied in order to optimize the biological and operational parameters. Pilot's experimental results summarize as followings. 1. T-N removal efficiency in the organic volumetric loading 0.2 kgCOD/m$^{3}$·d was obtained as maxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.. 2. Nitrification reaction was shown as maxium in the SCOD$_{cr}$/NH$^{+}$-N ratio of 6.5 and in more ratio than this it was decreased. Denitrification rate was the maxium as 85% in more than 7.5 of SCOD$_{cr}$/NO$_{x}$-N ratio and in the ratio over this ratio it becomes constant. 3. By utilizing an applied new model of Stover-Kincannon from Monod's kinetic model, concentration of T-N in the effluent according to flow quanity in the influent was estimated as 8.74 and -67.5 respectively. The formula for estimating T-N concentration of effluent was obtained like this: N$_e$=N$_0$(1- $\frac{8.74}{(QN$_0$/A)-67.05}$)

  • PDF

Nitrification and Denitrification of Land-based Fish Farm Wastewater using an Anaerobic-Aerobic Upflow Biological Aerated Filter (혐기-호기 상향류 필터 공정에서 양식배출수의 질산화 및 탈질 연구)

  • Park, Noh-Back;Lee, Hyun-Young;Kim, Seong-Min;Lee, Jun-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.622-629
    • /
    • 2014
  • This study induced biological denitrification and nitrification via a biofiltration process with the view of removing nitrogen from land-based fish farm effluent. To achieve this, we operated an aquaculture nitrogen-removal system that includes a denitrification and nitrification reactor [working volume 40 L, flow rate 64.8 L, HRT (hydraulic retention time) 14.8 h, HRT considering recycling of NOx 7.4 h]. In the continuous process, the nitrification rate of ammonium nitrogen exceeded 90% at a steady state and the denitrification efficiency exceeded 80% with recycling to a pre-anoxic reactor. In addition, the pH in the final effluent was lower with a low influent water alkalinity averaging 100 mg/L (as $CaCO_3$). For effective denitrification reactions, carbon must be supplied via particulate organic matter (POM) hydrolysis because of the low C/N (carbon/nitrogen) ratio in the water.