• Title/Summary/Keyword: Influence Coefficient Method

Search Result 586, Processing Time 0.027 seconds

Development of Vibration Analysis Algorithm for Joined Conical-cylindrical Shell Structures using Transfer of Influence Coefficient

  • Yeo, Dong-Jun;Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2013
  • This describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.

A Study on Balancing of High Speed Spindle using Influence Coefficient Method (영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구)

  • Koo, Ja-Ham;Kim, In-Hwan;Hur, Nam-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

Propose new methodology based on Kano's Model (KANO모델을 기반으로 한 품질속성 평가방법론 제안)

  • Cho, Yong-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.259-269
    • /
    • 2013
  • Customer satisfaction is an ever-growing concern of management throughout the world. To find the way to increase customer satisfaction, we must understand customer requirements. Kano distinguishes between three types of product requirements(:must-be, one-dimensional, attractive requirements which influence customer satisfaction in different ways when met. Timko has developed customer satisfaction(CS) coefficient based on Kano model. The CS coefficient is indicative of how strongly a product feature may influence satisfaction. As there were a few limitations on the Kano's method and on the Timko's customer satisfaction index method. The objective of this study is to provide improved methodology based on the Kano's method. One case studies are solved by the proposed method.

Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient (유연도 영향계수법을 이용한 접촉 결합부의 모델링)

  • 오제택;조성욱;이규봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.814-819
    • /
    • 2003
  • Machine tool design concepts have evolved towards high efficiency, accurate precision. high structural integrity, and multi-functional systems. Like many other structures, machine tools are also composed of many parts. When these parts are assembled, many kinds of joints are used. In the finite element analysis of these assembled structures, most joints are commonly considered as rigid joints. But, to get the more accurate solution, we need to model these joints in a appropriate manner. In this study, rational dynamic modeling and analysis method for complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method. the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model can be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models. which demonstrated the practical applicability of the proposed method.

  • PDF

On Development of Vibration Analysis Algorithm of Beam with Multi-Joints (다관절 보의 진동해석 알고리즘의 개발에 관한 연구)

  • 문덕홍;여동준;최명수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 1994
  • The authors apply the transfer influence coefficient method to the 3-dimensional vibration analysis of beam with multi-joints and formulate a general algorithm to analysis the longitudinal, flexural and torsional coupled free vibration. In this paper, the structure, which is mainly founded in the robot arms, cranes and so on, has some crooked parts, subsystems and joints but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at which node the displacement vector is discontinuous. The superiorty of the present method to the transfer matrix method in the computation accuracy was confirmed by the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could ve controlled by varying the values o the spring constants.

  • PDF

Improvement Method for Efficiency Analysis in National R&D Programs (국가R&D사업 효율성 분석의 개선 방법)

  • Kang, Ji-Hye;Baek, Dong-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.82-88
    • /
    • 2014
  • The government expands its investment on R&D programs for economic growth, thus there is growing attention on the result of R&D Programs. This study proposes more improved measuring method for efficiency when the number of R&D programs is not enough to be for measuring efficiency analysis. It provides more various application method of factors on efficiency analysis. This study analyzes the influence of each input factor on efficiency by using partial efficiency concept. And it also determines input factors in similar influence throughout Spearman correlation coefficient. Finally, it suggests new method to improve discriminatory power of efficiency analysis by determining representative factors. Also, the proposed method can be practiced not only for national R&D programs, but also for other fields of research.

On Development of Vibration Analysis Algorithm of Beam with Multi - Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 (II))

  • 문덕홍;최명수;홍숭수;강현석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.256-266
    • /
    • 1997
  • The authors apply the transfer influence coefficient method to the 3. dimensional vibration analysis of beam with multi - joints and formulate a general algorithm to analyse the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure which is mainly found in the robot arms, cranes and so on, has some crooked parts, subsystems and joints, but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at node which the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

Analysis of Structural joints Using Flexibility Influence Coefficient (유연성 영향 계수를 이용한 구조물의 결합부 해석)

  • 이재운;고강호;이수일;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.831-836
    • /
    • 1994
  • This paper presents rational modeling and analysis method for complex structures with various structural joints. For modeling of structural joint, a general modeling technique is newly proposed by flexibility influence coefficient and inverse of flexibility matrix and static reduction concept which is applied to the retained DOFs(degrees of freedom) of detailed finite element model of struction joints. By this method,joint model with contact surface. which can not be reduced by the general reduction theory such as Guyan reduction theory ,can be reduced effectively. And in this method, the nonlinearity of the contact surface can be linearized within a proper range and the boundary effects of joint region can be excluded. Using the proposed method, screwed joint,glued joint and bolted joint are analyzed. And the effectiveness of the proposed method is verified by experiments.

  • PDF

A study on measurements of local ice pressure for ice breaking research vessel "ARAON" at the Amundsen Sea

  • Kwon, Yong-Hyeon;Lee, Tak-Kee;Choi, Kyungsik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.490-499
    • /
    • 2015
  • In this study, a local ice pressure prediction has been conducted by using measured data from two ice breaking tests that was conducted for a relatively big ice floe at Amundsen Sea in the Antarctica from January 31 to March 30 2012. The symmetry of load was considered by attaching strain gauges on the same sites inside the shell plating of ship at the port and the starboard sides in the bow thrust room. Using measured strain data, after the ice pressure was converted by the influence coefficient method and the direct method, the two values were found to be similar.

Measurement of Thermal Coefficient at High Temperature by CW-Laser Speckle Photography and Image Processing (고온하의 CW 레이져 스페클 사진법과 화상처리에 의한 열팽창계수 측정에 관한 연구)

  • Kim, Gyeong-Seok;Choe, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.90-99
    • /
    • 1992
  • In resent year Laser Speckle and its development have enabled surface deformation of engineering components and materials to be interferometrically examined. Laser Speckle- Pettern Interferometry Method is a very useful method for measuring In-plane components of displacement. In measuring thermal expansion coefficient, the various problems generated were established, and the measuring limitation examined. Metarial INCONEL 601 was used in experiments. Specimen was heated to the high temperature(100$0^{\circ}C$) by diong current to the direct two specimen. Then, those problems appear to the influence of back-ground radiation by the heated specimen, the influence by air turbulence, the oxidation of specimen. The color monitor and interference filter prevented the back-ground radiation by rad heat. The oxidation occuring in specimen itself was not generated by the being acid-proof excellence of material INCONEL 601. Yet, in this experiments, the serious problems are the oxidation of specimen and influence by air turbulence. By more reserching these problems forward, it is helpful that the thermal expansion coefficient of many materials is directly measured under high temperature.

  • PDF