• Title/Summary/Keyword: Inflow water

Search Result 1,486, Processing Time 0.022 seconds

Characteristics of Allochthonous Organic Matter in Large Dam Reservoir, Lake Soyang (소양호에서 외부기원유기물의 유입, 유출 특성)

  • Park, Hae-Kyung;Kwon, Oh-youn;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.88-97
    • /
    • 2011
  • To identify the inflow and outflow characteristics of allchthonous organic matters and examine the change of allochthonous organic matter load pattern due to the climate change, we investigated the temporal variations of DOC and POC concentrations within inflow water and dam discharge water and spatio-temporal distribution of POM within the lake water in Lake Soyang which is the largest dam reservoir in Korea in 2006. Most of allochthonous DOC flowed into the lake water during initial rain and was not affected by the amount of precipitation, whereas most of allochthonous POC flowed into during concentrated heavy rain and the concentration of POC was significantly associated with the amount of inflow water and precipitation. Calculated annual allochthonous organic matter loads in Lake Soyang from 2003 to 2006 using the regression equation between the amount of inflow water and the concentration of POC indicate allochthonous organic matter loads are mainly affected by total influx and extreme influx of inflow water. The spatio-temporal distribution of POM indicated allochthonous organic matter of inflow river during flood period in July transported from upper part to middle and lower part of the lake a month later respectively along the middle layer of water column in Lake Soyang.

Improvement of Inflow Estimation Data by Precise Measurement of Water Level in Reservoir (저수지 수위 정밀 측정에 의한 댐 유입량 자료 개선)

  • Park, Ji-Chang;Kim, Nam;Ryoo, Kyong-Sik
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.309-314
    • /
    • 2009
  • A accurate reservoir inflow is very important as providing information for decision making about the water balance and the flood control, as well as for dam safety. The methods to calculate the inflow were divided by the directed method to measure streamflow from upstream reservoirs and the indirected method to estimate using the correlation of reservoir water level and release. Currently, the inflow of multi-purpose dam is being calculated by the indirect method and the reservoir water level to calculate the storage capacity is being used by centimeters(cm) units. Corresponding to the storage volume of 1cm according to scale and water level of multi-purpose dam comes up to from several 10 thousand tons to several million tons. If it converts to inflow during 1 hour, and it comes to several hundred $m^3/sec$(CMS). Therefore, the inflow calculated on the hourly is largely deviated along the water level changes and is occurred minus value as the case. In this research, the water level gage has been developed so that it can measure a accurate water level for the improvement for the error and derivation of inflow, even though there might be various hydrology and meteorologic considerations to analyse the water balance of reservoir. Also, it is confirmed that the error and the standard derivation of data observed by the new gage is decreased by 89,6% and 1/3 & 87% and 2/3 compared to that observed by the existing gage of Daecheong and Juam multi-purpose dam.

Evaluation of First Flush Rainfall Inflow and Pollution Loads into Manhole against Combined and Sanitary Sewer Overflows (초기우수 관거유입계수 산정 및 오염부하 기여도 평가)

  • Kim, Hongtae;Shin, Dongseok;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.67-70
    • /
    • 2015
  • Some data into combined and sanitary sewer system were collected in order to find out the characteristics of discharge from first flush rainfall inflow. The inflow ratios of combined and sanitary sewer system were 0.46 and 0.27 during rains from various survey data. The average inflow ratio 0.31 was appropriate for general application because many watersheds were not classified clearly as combined or sanitary sewage treatment areas. The percentage of first flush loads in the whole BOD load was about 10%. This result was thought some meaningful, comparing with similarity of first flush pollution load contribution previous surveyed by KECO (2004).

Change in Water Quality and Phytoplankton of Gwangju Stream due to Water Input from Lake Juam (주암호 용수 유입에 의한 영산강 지류 광주천의 수질 및 식물플랑크톤 변화)

  • Jeong, Byungkwan;Kim, Sehee;Shin, Yongsik
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.431-445
    • /
    • 2022
  • The Gwangju Stream is a major tributary of the Yeongsan River. To maintain environmental and ecological functions in the stream, the flow is secured by natural water from the Mudeung Mountain as well as waters discharged from Lake Juam and the Gwangju sewage treatment plants. A substantial amount of water is supplied into the upper reaches of Gwangju Stream from Lake Juam. To examine the ecological effects of the water input from Lake Juam on the Gwangju Stream, a field survey of phytoplankton community species and an evaluation of water properties was conducted at five stations, from station GJ1 before the inflow to station GJ5 in the lower region. Nutrient levels decreased in the vicinity of the Lake Juam inflow, suggesting that this water inflow can contribute to the reduction of eutrophication in the stream. The phytoplankton community was mainly composed of Bacillariophyceae, Chlorophyceae, and Cyanophyceae, and the community structure was similar to that of the other study sites located near the water inflow regions. The inflow of water from Lake Juam can affect water quality and the phytoplankton community over a limited area, reducing eutrophication and increasing water flow in the Gwangju Stream.

Siniulating Daily Inflow and Release Rates for Irrigation Reservoirs(III) - Model Application to Dafly Reservoir Operations - (관개용 저수지의 일별 유입량과 방류량의 모의 발생 (III) -저수지 모의조작 모형의 응용-)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.95-105
    • /
    • 1988
  • This study refers to the development of a hydrologic model simulating daily inflow and release rates for irrigation reservoirs. A daily - based model is needed for adequate operation of an irrigation reservoir sufficing the water demand for paddy fields which is closely related to meteorological conditions. And the objective or this study is to develop a Daily Irrigation Reservoir Operation Model(DIROM) combining the inflow and the release models which depicts the daily water level fluctuations of an irrigation reservoir, and to evaluate the applicability of the model. DIROM was applied to four reservoirs and daily water levels were simulated and compared to the observed data. The model behaviour was also compared with that of a ten - day based model, Reservoir Operation Study(ROS) which has been applied for determining the design capacity of reservoirs. Various combinations of measured and simulated inflow and release rates for tested reservoirs were used to define the daily water level fluctuations. Simulated release rates and measured inflow data resulted in larger errors, and simulated inflow and release rates produced the smallest errors in water level comparison. Two resevoir operation models, DIROM and ROS were applied to the same reservoir and the simulation results compared. The computational errors of DIROM ware smaller than those of ROS, and DIROM was more sensitive to meteorological conditions. DIROM demonstrated its potenial applicability in water management and operation.

  • PDF

A Study on the Water Quality Affected by the Rainfall and Influent Rivers in Paldang Reservoir, Korea (강우 및 유입 하천수가 팔당호 수질에 미치는 영향분석)

  • Kim, Jongmin;Noh, Hyeran;Heo, Seongnam;Yang, Heejeong;Park, Jundae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.277-283
    • /
    • 2005
  • This paper aimed to compare the daily water quality as well as the hydrological data gathered for the past two years (2000 to 2001) between the two influent rivers of Paldang reservoir. The analysis also has been carried out to draw out the factors that affect the water quality at the dam site, where the main drinking water drawing point is located. The relationship between total amount of monthly rainfall and monthly inflow showed $r^2=0.74$ (p<0.05). The highest peak of inflow of influent rivers recorded in August and September (in the year of 2000) and July and August (2001). Average inflows of influent rivers in 2000 and 2001 are calculated at 209.0, 161.5 CMS (Bughangang), 268.6, 148.2 CMS(Namhangang), and 7.8, 5.0 CMS (Gyeongancheon). The formula which was driven from the relationship between inflow and COD load of influent rivers, explained that COD concentration in general increased with the inflow. But during the rainy seasons (July, August, and September), COD concentration decreased according to the increase of inflow. The daily rainfall and COD concentration(or load) during the rainy season (August and September in the year of 2000, July and August in 2001) indicated that the peak of COD load correspond with the rainfall, which decreased sharply after 3 or 4 days. The reason was thought that the high COD load was diluted rapidly by the rain flow. Water temperature, pH and conductivity measured at dam site decreased obviously when the inflow sharply increased. Peak period of total phosphorus concentration coincided with that of inflow. In rainy season, chlorophyll-a concentration decreased obviously as the inflow increased. The reason can be ascribed to the flushing effect caused by the operation of floodgate.

A gene expression programming-based model to predict water inflow into tunnels

  • Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Laith R. Flaih;Abed Alanazi;Abdullah Alqahtani;Shtwai Alsubai;Nabil Ben Kahla;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • Water ingress poses a common and intricate geological hazard with profound implications for tunnel construction's speed and safety. The project's success hinges significantly on the precision of estimating water inflow during excavation, a critical factor in early-stage decision-making during conception and design. This article introduces an optimized model employing the gene expression programming (GEP) approach to forecast tunnel water inflow. The GEP model was refined by developing an equation that best aligns with predictive outcomes. The equation's outputs were compared with measured data and assessed against practical scenarios to validate its potential applicability in calculating tunnel water input. The optimized GEP model excelled in forecasting tunnel water inflow, outperforming alternative machine learning algorithms like SVR, GPR, DT, and KNN. This positions the GEP model as a leading choice for accurate and superior predictions. A state-of-the-art machine learning-based graphical user interface (GUI) was innovatively crafted for predicting and visualizing tunnel water inflow. This cutting-edge tool leverages ML algorithms, marking a substantial advancement in tunneling prediction technologies, providing accuracy and accessibility in water inflow projections.

Conservative Adjustment of the Standard Calculation Method of Inflow Water Into a Separated Sewer System (분류식 하수관로에서 유입수 표준매뉴얼 산정방법의 보수적 수정 결과)

  • Chu, Minkyeong;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.423-430
    • /
    • 2020
  • To improve the low treatment efficiency of sewage treatment plants, the separated sewer system must be maintained to provide an adequate flow rate and quality of the sewage under the effect of inflow. In this study, data from five locations of Namsuk, Dukgok1, Dukgok2, Kanggu, and Opo were used to conservatively calculate the inflow water volume. The sewer flow and rainfall data were collected in 2017. The factors in the standard method used to calculate the inflow of the combined sewer pipes including "rainy days", "rainfall impact period", and "period for basal sewer" were defined as 3 mm/day, continuous rain for two days, and two weeks prior to the inflow generation, respectively. "Rainy days", "rainfall impact period", and "period for basal sewer" were conservatively adjusted to 5 mm/day, continuous rain for five days, and three weeks prior to the inflow generation, respectively. As a results of the adjustment, the linearity (r2) was improved except for in Dukgok1. This implies that the conservative adjustment made in this study could improve the management quality of sewer pipes. Also, the linear correlation coefficient (ai) between inflow and rainfall showed a large difference between the target locations, which can be another monitoring factor affecting the quality of sewer pipes. To improve the correlation based on the individual characteristics of the locations in Korea, the automatic algorithm for the inflow calculation should be developed by innovative intellectual technologies for application to the entire national area.

Influence of the Point Source Inflow on the Water Quality Variation in the Downstream of Hyeongsan River (점오염원 유입이 형산강하류 수질변화에 미치는 영향)

  • Lee, Chang-Soo
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1075-1080
    • /
    • 2008
  • The influence of the point source inflow on the water quality variation in the downstream of Hyeongsan River was investigated. As the results of seasonal variation, the pollutant concentrations of dry season were 1.5-4 times higher than those of wet season. The increase rate of $BOD_5$, $COD_{Mn}$, T-N, T-P due to point source were ranged to $8.1\sim42.6%$, $7.3\sim41.9%$ and $17.1\sim207%$ as the inflow of P1, P2 and P3, respectively. After P1, P2 and P3 inflow, the accumulated increase rate were 64.3%, 32.6%, 93.1% and 258.9% in $BOD_5$, $COD_{Mn}$, T-N, T-P, respectively. It was found that the influence of point source inflow on the water quality in the downstream of Hyeongsan River is severe.

A Study on the Relationship between Cyanobacteria and Environmental Factors in Yeongcheon Lake (영천호에서 남조류 발생과 환경요인의 관련성 연구)

  • Lee, Hyeon-Mi;Shin, Ra-Young;Lee, Jung-Ho;Park, Jong-geun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.352-361
    • /
    • 2019
  • The purpose of this study is to analyze the characteristics and correlations of the Yeongcheon Lake in order to reduce the occurrence of harmful cyanobacteria. In this study, we investigated the water quality and phytoplankton of the lake from May to November in 2017. Correlation and data mining analyses were performed to analyze the relationship between the two factors. The water temperature was lowest at the point where the Yeongcheon Lake inflow occurs at Imha Lake. It was highest at the point where the outflow occurs to Angye Lake. The pH was also highest at the outflow point, but in the case of DO, it was highest at the midpoint between the inflow and outflow. The main cyanobacteria that emerged during the study period were Oscillatorialimosa, Microcysti saeruginosa and Aphanizomenon flos-aquae. As a result of correlation analysis, the water temperature, inflow, COD loading, TOC loading at the inflow point of the Yeongcheon Lake were the items that were related to the harmful cyanobacteria. The data mining analysis indicated that the TP loading and harmful cyanobacteria in the inflow point of the Yeongcheon Lake were influential on the detrimental cyanobacteria in the Yeongcheon Lake outflow point. When the TP loading was less than 39.0 kg/day at the inflow site, it was expected that the amount of harmful cyanobacteria could be maintained below 10,000 cells/mL.