• Title/Summary/Keyword: Inflow volume

Search Result 185, Processing Time 0.025 seconds

An Experimental Runoff Formula in Building Roof Area for On-site Rainwater Management (On-site 방식 빗물관리를 위한 건축물 지붕면의 유출특성 경험식 수립)

  • Kim, Young-Jin;Han, Moo-Young;Kim, Yong-Ha;Mun, Jung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.171-176
    • /
    • 2009
  • This study proposes an experimental formula for cumulative runoff analysis in building roof for on-site rainwater management. We can not find an appropriate method for roof runoff analysis because of its small area scale. A new runoff equation formula for rainfall depth(D) and cumulative runoff volume(V) is developed on roof runoff conditions. Reliability of the formula is verified with field experimental runoff monitoring for two years in two buildings of rainwater management system. This experimental runoff formula can root the cumulative runoff volume from roof area and rainfall depth, then develop reasonable inflow condition for rainwater retention tank design.

Experimental Investigation of Local Half-cone Scouring Against Dam under the Effect of Localized Vibrations in the Sediment Layers

  • Dodaran, Asgar Ahadpour;Park, Sang Kil;Mardashti, Asadollah;Noshadi, Mehrzad;Afsari, Mohammad
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • Most natural river reach are approximately balanced with respect to sediment inflow and outflow. Dam construction dramatically alters this balance, creating an impounded river reach characterized by extremely low flow velocities and efficient sediment trapping. The impounded reach will accumulate sediment and lose storage capacity until a balance is again achieved, which would normally occur after the impoundment has become "filled up" with sediment and can no longer provide water storage and other benefits. This paper aims to investigate the sediment removal process in dam reservoir using simultaneously pressure flushing operation and vibrator machine. The main objective of this study is to identify the effect of vibrator in flushing cone dimensions. To achieve the objectives of present study, laboratory test have conducted under different hydraulic conditions such as two bottom outlets with diameter equal to 2" and 3", five discharges 0.23, 0.53, 1.21, 1.53 and 2.1 lit/s and only one water depth above the center of bottom outlets. Using the vibrator machine mounted into the reservoir and close to the bottom outlet, different frequency e.g. 20, 35 and 50 HZ, have been introduced to the deposited sediment at the vicinity of outlet. The results indicate that the volume and width of flushing cone are strongly affected by frequency of vibrations. The results indicate that the volume and width of flushing cone are strongly affected by frequency of vibrations.

A Fundamental Study on the Spindle Flow of the Yarn Dyeing (사 염색의 Spindle 유동에 관한 기초적 연구)

  • Kang, Min-Sung;Lee, Ho-June;Noh, Seok-Hong;Chun, Doo-Hwan;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3156-3161
    • /
    • 2007
  • In the field of yarn dyeing, the most generally employed method is a type of package dyeing which uses a package of cheeses stacked on a spindle made of a perforated tube. In order to understand the process of level dyeing, it is essential to perform a study of the porous flow through the spindle for the cheese dyeing method. In this paper, the axisymmetric, incompressible, Navier-Stokes equations are solved for several spindle configurations using a fully implicit finite volume scheme. For investigating the flow patterns through the spindle, porous diameter and porosity is varied in the present study. The computational results show that the total pressure loss depends only on the velocity of inflow regardless of porous diameter and porosity and a large percentage of the mass flow rate through the spindle is discharged at the upside of the spindle. Therefore, it is required to design a new spindle to obtain the level dyeing.

  • PDF

Hydraulic Residence Time in a Prototype Free Water Surface Constructed Wetland

  • Lee, Kyung-Do;Kwun, Soon-Kuk;Kim, Seong-Bae;Cho, Young-Hyun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, a tracer test using rhodamine-WT was performed to investigate the flow characteristics and to quantify the observed hydraulic residence time (HRT) for a high-lying cell in the Banwol wetland of the Sihwa constructed wetland. The tracer test indicated that even if flow was mainly observed in the open water area of the Banwol wetland, water flowed continuously in the vegetative area and there was no dead zone. The calculated HRT (51.3 hrs), calculated by dividing the wetland volume by the wetland inflow, exceeded the observed HRT (38.7 hrs), since the short-circuiting of flux resulting from irregular topography and vegetation was not reflected in the calculated HRT. The exit tracer concentration curves were reproduced well by both the plug flow with dispersion and tanks-in-series models, indicating that the performance of the Banwol wetland can be estimated accurately using these models.

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

Defining optimum configuration for secondary clarifier using computer simulation (컴퓨터 시뮬레이션을 이용한 최적 이차침전지 형상 파악)

  • Lee, Byong-Hi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • Computer simulation has been widely used to design and optimize the operation of wastewater treatment plants since 1980. For secondary clarifiers, the simulation has been a tool to optimize the performance by providing dimensions for flocculation well. However, there has been no attempt to find the optimized geometrical parameters in circular secondary clarifier using simulation tools. In this study, three SVIs (Sludge Volume Indexes), two well types (feed and flocculation wells), 8 SWDs (Side Water Depths) and 9 bottom slopes were variables for simulation. Diurnal inflow and associated MLSS (Mixed Liquor Suspended Solid) concentrations were used for input loadings. When flocculation well was installed, 48% less concentration at lowest ESS (Effluent Suspended Solid) concentrations was produced and the diurnal ESS concentration range had been reduced by 52%. From these results, flocculation well must be installed to produce lower and stable ESS from circular secondary clarifiers. Under same loading conditions with $300m{\ell}$/g of SVI, The lowest ESS was produced when SWD was 4.5m with 4% of bottom slope. Therefore, SWD and bottom slope must not be deeper than 4.5m and must be near 4%, respectively, in circular clarifier with flocculation well to produce the lowest ESS concentration.

An Analysis of Mario Botta's residential design (Mario Botta 주거 건축의 특성 분석)

  • 조희라
    • Journal of the Korean housing association
    • /
    • v.12 no.4
    • /
    • pp.195-203
    • /
    • 2001
  • The purpose of this study is to analyze the characteristics of Mario Botta's residential design. The characteristics of Mario Botta's residential design are following as : 1. The residential design of Mario Botta planed from 1960' to 1970's is based on the style composition method of modern design, specially by the influence of Le Corbusier and Louis I. Kahn. Botta's residential design of the 1980's is generally affected by A. Palladio, and is characterized as the representation of classic standard. The residential design of the 1980's shows the establishment level of Mario Botta's residential design, and produces particular Botta's facade. 2. The characteristics of Mario Botta's spatial composition on residential design could be implicated by the spatial distribution of each floor which is divided by three floors, simple and primitive volume which has a symmetry, opening through the massive elimination n the center of front, double skin, the contrast between void and solid, and the inflow of light through the top-light. 3. Most Botta's residential designs have Loggia in the center of facade working as a buffer space which joins outside and inside space together. They also lead the spatial continuous flow. The inside space is combined by the light coming through top-light and vertical opening. 4. They have high accomplishment in complicating details. They show the outside design of a horizontal belt according to the module of concrete block and the decorated design using compositional materials such as an unevenness piled up askew concrete block .

  • PDF

Effect of Water Quality Improvement by Seawater Exchange Breakwater Install (해수교환 방파제 설치에 따른 수질개선효과)

  • Han, Dong-Joon;Lee, Dal-Soo
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.61-72
    • /
    • 2006
  • This study was carried out for verification of efficiency of seawater exchange breakwater which was installed in joomoongin harbor for the first time in our country. The joomoongin harbor, where seawater exchange breakwater has been constructed, shows typical for fishery and tourist port city specifics of greatest pollutants discharge volume in spring and summer, when tourist inflow and fishery activity is most vigorous. On the East Sea seawater flux through seawater exchange breakwater for the smallest waves (up to 0.5 m) was found out to be $1,526-3,052m^3/day$. After construction of seawater exchange breakwater, Zone 1 and Zone 2 of stagnant water inside the port were found to be a lot improved. Zone 3, adjacent to outport area, was found to be lower comparing with Zone 1 and Zone 2. The results of statistical analysis show that comparing with water quality improvement effect before and after seawater exchange, water quality after installation of seawater exchange breakwater became much better, primarily because of physical change around the harbour.

Numerical Analyses to Simulate Thermal Stratification Phenomenon in a Piping System (배관계통에서의 열성층 현상 모사를 위한 수치해석)

  • Jeong, Jae-Uk;Kim, Sun-Hye;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Kim, Jin-Su;Chung, Hae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.381-388
    • /
    • 2009
  • In some portions of nuclear piping systems, stratification phenomena may occur due to the density difference between hot and cold stream. When the temperature difference is large, the stratified flow under diverse operating conditions can produce high thermal stress, which leads to unanticipated piping integrity issues. The objectives of this research are to examine controvertible numerical factors such as model size, grid resolution, turbulent parameters, governing equation, inflow direction and pipe wall. Parametric three-dimensional computational fluid dynamics analyses were carried out to quantify effects of these parameters on the accuracy of temperature profiles in a typical nuclear piping with complex geometries. Then, as a key finding, it was recommended to use optimized mesh of real piping with the conjugated heat transfer condition for accurate thermal stratification analyses.

Estimation of Water Loss in Irrigation Canals through Field Measurement (현장 측정을 통한 관개용수로의 손실량 추정)

  • Lee, Yong-Jig;Kim, Phil-Shik;Kim, Sun-Joo;Keun, Jee-Yong;Joo, Uk-Jong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • Water losses in irrigation canals are mainly estimated as the sum of conveyance and delivery water loss. The losses occur via the evaporation, infiltration, gate operation and water distribution processing. Recently, the study regarding these water losses are not satisfactory enough, also delivery water loss has not been mainly considered on field design. The objective of this study is to investigate and analyze the volume of water loss in irrigation canals considering condition of actual farm land. A field measurement was performed at four research sites, which are managed by Korea Rural Community & Agriculture Corporation, to evaluate conveyance and delivery water loss for 2 years. The measurement was performed by canal type, size and designed flow using the inflow-outflow method at a major points such as start and end of each canal, derivation point of canal and inlet of paddy fields. Results of this study showed that water loss ratio in lateral canals was bigger than that of main canal unlike current design standard and the loss decrease as flow increase. The total of water loss ratio including conveyance and delivery water loss in several irrigation canals ranged between 33.25 and 45.0%.