• Title/Summary/Keyword: Inflow rate

Search Result 520, Processing Time 0.028 seconds

Design of automotive engine cooling fan and study on noise reduction through modification of system (자동차용 냉각팬의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이덕주;이재영;이덕호;신동수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.196-201
    • /
    • 2003
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore, the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, experimental study on the fan and system was carried out and brought a successful result of performance and noise from a designed fan. And through the modification of the fan system, the fan produced more flow rate and became less noisy.

  • PDF

Adsoption Removal of PCBs by Activated Carbon (활성탄에 의한 PCBs의 흡착제거)

  • Yu, Yong-Ho;Lee, Jong-Jig
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.59-64
    • /
    • 2006
  • In this study, adsorption characteristics of PCBs on granular activated carbon were experimentally investigated in a batch reactor and in a fixed bed reactor. Granular activated carbon removed above 98.4% of initial concentration, 1000mg/L, of PCBs. It was estabilished that the adsorption equilibrium of PCBs on granular activated carbon was more successfully fitted by Freundlich isotherm equation in the concentration range from 1 to 1000mg/L. Because Freundlich parameter, ${\beta}$ is 0.346, removall treatment of PCBs by activated carbon accounts for the fact that toxicity reduction can be achieved through this process. Appearance time of breakthrough curve is faster with the increase flow rate and inflow concentration of liquid. The utility of granular activated carbon is enhanced with the increase of bed height and with the decrease of inflow rate.

Significance of nonlinear permeability in the coupled-numerical analysis of tunnelling

  • Kim, Kang-Hyun;Kim, Ho-Jong;Jeong, Jae-Ho;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • The inflow rate is of interest in the design of underground structures such as tunnels and buried pipes below the groundwater table. Soil permeability governing the inflow rate significantly affects the hydro-geological behavior of soils but is difficult to estimate due to its wide range of distribution, nonlinearity and anisotropy. Volume changes induced by stress can cause nonlinear stress-strain behavior, resulting in corresponding permeability changes. In this paper, the nonlinearity and anisotropy of permeability are investigated by conducting Rowe cell tests, and a nonlinear permeability model considering anisotropy was proposed. Model modification and parameter evaluation for field application were also addressed. Significance of nonlinear permeability was illustrated by carrying out numerical analysis of a tunnel. It is highlighted that the effect of nonlinear permeability is significant in soils of which volume change is considerable, and particularly appears in the short-term flow behavior.

Multi-objective Topology Optimization of Magneto-Thermal Problem considering Heat Flow Rate (열 유입률을 고려한 자계-열계 다목적 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Moon, Hee-Gon;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.138-139
    • /
    • 2007
  • This research provides machine designers with some intuition to consider both, magnetic and heat transfer effects. A topological multi-objective function includes magnetic energy and heat inflow rate to the system, which equals to the total heat dissipation by conduction and convection. For the thermal field regarding the heat inflow, introduced as a reaction force, topology design sensitivity is derived by employing discrete equations. The adjoint variable method is used to avoid numerous sensitivity evaluations. As a numerical example, a C-core design excited by winding current demonstrates the strength of the multi-physical approach.

  • PDF

How does FDI promote Economic Growth: Evidence from Mekong River Countries? (FDI가 어떻게 경제 성장을 촉진하는가?: 메콩강 주변국 연구)

  • Nguyen, Thi-Thanh-Tuyen;Choi, Chang Hwan
    • Korea Trade Review
    • /
    • v.44 no.6
    • /
    • pp.247-265
    • /
    • 2019
  • This research focuses on the influences of FDI on the economic growth of four countries by Mekong river: Vietnam, Laos, Cambodia and Thailand. At the same time, the study also analyzes the contributing of economic growth to attract FDI inflow to these countries. The panel data during the period 1998-2017 were collected from World Bank. Empirical analysis figures out that GDP, mobile phone, labor force are the determinants affecting positive to FDI and vice versa exchange rate, wage are the negative factors. Secondly, FDI, export, exchange rate, government expenditure impact positively on economic growth but inflation and population have negative effect on the economic development. Thirdly, The FDI and economic growth have impact mutually in Vietnam, Laos, Cambodia and Thailand economy. FDI plays a very crucial role in contributing greatly to the economic development of the Mekong sub-region. The economic growth is higher, the FDI inflow is more attractive. From the results, some practical suggestions are offered to enhance the competitiveness in attracting FDI.

Examination on Effect of Horizontal Vent Position on Fire Phenomena in Enclosure (구획실 화재 현상에 대한 수평 개구부 위치의 영향 검토)

  • Park, Yu Mi;Lee, Chi Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.235-236
    • /
    • 2022
  • In the present study, the effect of horizontal vent position on fire phenomena in the enclosure with vertical and horizontal vents was examined using numerical simulation. Case 1 indicates the condition that the horizontal vent is in the center of the ceiling. Case 3 indicates the condition that the horizontal vent is far away from the vertical vent. Case 2 indicates the condition that the horizontal vent is installed between Case 1 and Case 3. The temperature distribution, smoke layer temperature, velocity distribution, and mass flow rate of horizontal vent flow were analyzed. In Case 2, the temperatures were lowest and the mass flow rate through the horizontal vent was largest. This is because the flame is inclined by the inflow through the vertical vent. Hence, to determine the proper horizontal vent location for the high smoke ventilation performance, the inflow through the vertical vent and its effect on flame behavior should be considered.

  • PDF

Nitrogen Removal Rate of Free-Water-Surface Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (고수부지에 조성한 수질정화 자유수면습지의 초기운영단계 질소제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.41-48
    • /
    • 2003
  • Nitrogen removal rate and emergent plant growth were investigated of a free-water-surface constructed treatment wetland system, whose dimensions were 31m in length and 12m in width. The system was constructed on floodplain in the Kwangju Stream from May to June 2001. Cattails(Typha angustifolia) were transplanted from natural wetlands and their stems were cut at about 40cm height from their bottom ends. Water of the Kwangju Stream were funneled into the system by gravity flow and its treated effluent was discharged back into the stream. The average height of the cattail stems was 45.2cm in July 2001 and 186cm in October 2001. The number of stems averaged 22 stems/$m^2$ in July 2001 and 52 stems/$m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.01 and 39.55 $m^3$/day, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by cattails was 69.31 $N\;mg\;m^{-2}\;day^{-1}$. Removal rate of $NO_3-N$, $NH_3-N$ and T-N averaged 195.58, 53.65 and 628.44 $mg\;m^{-2}\;day^{-1}$, respectively. The average removal rate of T-N was about 39%.

Hydrological Feasibility for Heightening Dae-ah Reservoir (대아지 숭상을 위한 수문학적 가능성 평가)

  • Noh, Jae-Kyoung;Lee, Jae-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.225-235
    • /
    • 2008
  • The objective of this study is to evaluate the hydrological feasibility of heightening the Dae-ah reservoir in order to save instream flow at the Bong-dong station situated in the Mankyoung river. The results are summarized as follows. Firstly, from the Dong-sang and Dae-ah cascaded reservoir's water balance analysis, water supply indexes of the Dae-ah reservoir were analyzed to have the rate of water supply divided by watershed area of 1207.4 mm, the rate of water supply divided by rainfall of 95.8%, the rate of water supply divided by inflow of 153.1%, the rate of water supply divided by storage capacity of 236.1%, and the rate of inflow divided by storage capacity of 200.6%. Secondly, from the Dae-ah and Kyoung-cheon paralleled reservoir's water balance analysis, flow durations at the Bong-dong station were analyzed to have the Q95 (the 95th high flow) of $28.95m^3/s$, the Q185 (the 185th high flow) of $2.00m^3/s$, the Q275 (the 275th high flow) of $2.00m^3/s$, and the Q355 (the 355th high flow) of $0.82m^3/s$. Thirdly, in case of heightening the full water level of the Dae-ah reservoir of 10m, from the Dong-sang and Dae-ah cascaded reservoir's water balance analysis, water supply indexes of the Dae-ah reservoir were analyzed to have the rate of water supply divided by watershed area of 1220.7 mm, the rate of water supply divided by rainfall of 96.8%, the rate of water supply divided by inflow of 154.6%, the rate of water supply divided by storage capacity of 160.0%, and the rate of inflow divided by storage capacity of 137.0%. Fourthly, in case of heightening the full water level of the Dae-ah reservoir of 10m, from the Dae-ah and Kyoung-cheon paralleled reservoir's water balance analysis, flow durations at the Bong-dong station were analyzed to have the Q95 of $28.09m^3/s$, the Q185 of $1.79m^3/s$, the Q275 of $1.79m^3/s$, and the Q355 of $0.82m^3/s$. The conclusion appeared not to have the hydrological feasibility of heightening the Dae-ah reservoir from the reason that increased storage capacity does not increase water supply amount any more because of the high rate of the water supply divided by inflow.

  • PDF

Numerical Investigation on Fire of Stage in Theater: Effects of Natural Smoke Vent Area and Fire Source Location (공연장 무대부 화재에 대한 전산해석 연구: 자연 배연구 면적과 화원 위치 영향)

  • Park, Min Yeong;Lee, Chi Young
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This numerical study investigates the effects of the size of the natural smoke vent area (10% and 1% of the floor area) and the location of the fire source (i.e., at the side and center of the stage) on the temperature distribution in the compartment and velocity distribution and mass flow rate of flow through a natural smoke vent for a reduced-scale model of a theater stage. Then, the mass flow rate of outflow through the natural smoke vent in the event of a fire for a real-scale theater stage was examined. The case with the larger natural smoke vent area and central fire source location showed lower temperature distributions and higher mass flow rates of outflow and inflow than the case with the smaller natural smoke vent area and side fire source location. The trends of the temperature distributions were closely related to those of the mass flow rates for the outflow and inflow. Additionally, the case with the larger natural smoke vent area and central fire source location exhibited the most non-uniform flow velocity distribution in all cases tested. A bidirectional flow, in which the outflow and inflow occur simultaneously, was observed through the natural smoke vent. In the event of a fire situation in a real-scale theater stage, it was predicted that the case with the larger natural smoke vent area and central fire source location would have a mass flow rate of outflow that is 43.53 times higher than that of the case with the smaller natural smoke vent area and side fire source location. The present results indicate that the natural smoke vent location should be determined by considering the location in a theater stage where a fire can occur.

Numerical study for the optimum grouting design of subsea tunnels (해저터널의 그라우팅 최적 설계를 위한 수치해석적 연구)

  • Joo, Eun-Jung;Kim, Yong-Kye;Shin, Jong-Ho;Kwon, Oh-Yeob
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2010
  • In the long-term, most tunnels suffer from the increase in ground water inflow and in pore water pressure on the lining. To reduce such hydraulic effect, generally grouting methods are adopted. In this paper effective grouting design is proposed based on numerical simulation. To investigate the optimal grouting layout, factors such as relative permeability, grouting thickness, and distance from the lining are considered. The results are analysed in terms of pore water pressure, inflow rate, and earth pressure. It is revealed that the pore water pressure has increased with a decrease in grout permeability, an increase in grouting thickness and an increase in grouting distance. Meanwhile the inflow rate has decreased with a decrease in grout permeability and is inversely proportional to grouting thickness. Effective grouting design guideline are proposed based on this study.