• Title/Summary/Keyword: Inflow rate

Search Result 520, Processing Time 0.027 seconds

Development of the Estimation Model on Daily Pollutant Loads for the Nakdong River Basin II. Application of the Model (낙동강 유역에 대한 일별 유달부하량 산정모델개발 II. 모델식의 활용)

  • Yoon, Young-Sam;Yu, Jae-Jeong;Kim, Moon-Soo;Lee, Hae-Jin;Lee, Jun-Bae;Yang, Sang-Yong
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.333-345
    • /
    • 2007
  • As analyzed the estimated values of the daily delivery loads from thirteen major side streams such as Naesung-river, Keumho-river, Hwang-river, Nam-river during five years (from 1999 to 2003), the daily BOD inflow into the main stream of Nakdong river in 2003 shows the highest quantity as 31.1 ton and the daily BOD inflows in 1999, 2000, 2001, and 2002 are 26.7 ton, 22.5 ton, 21.0 ton, 25.8 ton, respectively. The daily TN in-flow into the main stream of Nakdong river in 2003 shows also the highest quantity as 64.9 ton and the daily TN inflows in 1999, 2000, 2001, and 2002 are 55.19 ton, 46.27 ton, 39.5 ton, 53.38 ton, respectively. The daily TP inflow into the main stream of Nakdong river in 2003 shows the highest quantity as 2.70 ton likewise and the daily TP inflows in 1999, 2000, 2001, and 2002 are 2.17 ton, 1.87 ton, 1.60 ton, 2.10 ton, respectively The rate of BOD loads from each side main stream into the main stream of Nakdong river shows that the BOD loads of Keumho-river are the highest as the values range from 32.8 % (2002) ${\sim}$ 35.1 % (2003) and the BOD loads of Nam-river, Naesung-river, Hwang-river are high in the order named. The rate of TN loads to the main stream is also similar to the trend of BOD loads. The contribution of the TN loads of Geumho-river to the contamination of the main stream is also the highest having a range from 27.0 % (2002) to 28.8 % (1999) among the main side streams and the TN loads of Naesung-river, Nam-river, and Heachun-river are high in the order named. The rate of TP loads is quite different from the trend of BOD and TN loads. The TP rate of Keumho-river, however, is still the highest as ranging 58.6 % (2002) to 61.7 % (2003) and the river has the biggest portion (over 50%) of the entire pollution to the main stream of Nakdong river.

Water Balance in a Paddy Field with Pumping Irrigation System (양수장 용수공급 논 지대의 물수지)

  • 정운태;이근후;이인영
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.1-7
    • /
    • 1998
  • To investigate the water balance in a paddy rice field with the pumping station for irrigation water supply, flow measurements and analysis on various components of water balance were carried out. The investigated area is 103.7 ha, and the irrigation water was supplied for 102 days during the total irrigation period starting from June 1. It was found that the consumption rate was increased as the growing stage was progressed. The variation of evapotranspiration rate was shown same tendency as the consumption rate, while no apparent tendency was found in infiltration rate upon different growing stages. And the ground water input to the area was predominant during the early stage of growing period, while ground water output from the study area was predominant at the end of the growing stage. The range of return flow rate, the ratio of total outflow to total inflow in every decad, was 57.6 to 85.7%. These values are slightly higher than reported values from the other investigation projects.

  • PDF

A Study on Dutch Disease: Effect of Financial Flow on Real Exchange Rate

  • Atama, Louis
    • Asia-Pacific Journal of Business
    • /
    • v.7 no.2
    • /
    • pp.21-37
    • /
    • 2016
  • Using panel data for 29 developed countries, this paper studies the relationship between financial flow and trade markets on Dutch diseases for the period 2000-2010 and applying a fixed effects model. In particular, the study shows that an increase in inflows of foreign direct investment (FDI) leads to an appreciation of the real exchange rate. The result also suggests that an inflow of FDI accompanied by exports or government expenditure from tax revenue leads to real exchange rate appreciation. This paper also argued that stock market with FDI does not cause an appreciation of the real exchange rate.

  • PDF

Evaluation of Sewage Treatment Plant Efficiency in the Variation of Sewage Inflow and Sludge Interface Height by Rainfall (강우로 인한 유입하수량 증가와 슬러지 계면높이 변화에 따른 하수처리장 효율평가)

  • Park, Hye-Sook;Song, Seok Heon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.549-553
    • /
    • 2014
  • Variation of sewage sludge interface height and flow rate by rainfall were applied to the actual public sewage treatment plant, and the efficiency of sewage treatment was evaluated by measuring $BOD_5$, $COD_{Mn}$, SS, T-N, and T-P. When both flow and interfacial height are increased, the treatment efficiencies in terms of the five water pollutants are decreased. Among them SS is the most critical pollutant in rainfall. When 0.5 Q inflow was applied, the efficiencies were 74.2% at the sludge interface height of 0.5 m, 76.4% at 1.0 m, 70.2% at 1.5 m, and 60.7% at 2.0 m. When 1.0 Q inflow was applied, the efficiencies were 71.7% at the sludge interface height of 0.5 m, 71.9% at 1.0 m, 46.4% at 1.5 m, and -38.0% at 2.0 m. Operation at 2.0 Q~2.0 m and 3.0 Q~1.0 m above the sludge rising phenomenon occurred causing adverse effects on the public bodies. If the flow rate increases, the processing efficiency is reduced from 74.2% to 17.3%, even though the sludge interface height was maintained at 0.5 m, so that the inflow adjustment was most important during rainfall, and the interface height of 1.0 m should be maintained to minimize the adverse effect on public water system.

Flood inflow forecasting on HantanRiver reservoir by using forecasted rainfall (LDAPS 예측 강우를 활용한 한탄강홍수조절댐 홍수 유입량 예측)

  • Yu, Myungsu;Lee, Youngmok;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Due to climate changes accelerated by global warming, South Korea has experienced regional climate variations as well as increasing severities and frequencies of extreme weather. The precipitation in South Korea during the summer season in 2013 was concentrated mainly in the central region; the maximum number of rainy days were recorded in the central region while the southern region had the minimum number of rainy days. As a result, much attention has been paid to the importance of flood control due to damage caused by spatiotemporal intensive rainfalls. In this study, forecast rainfall data was used for rapid responses to prevent disasters during flood seasons. For this purpose, the applicability of numerical weather forecast data was analyzed using the ground observation rainfall and inflow rate. Correlation coefficient, maximum rainfall intensity percent error and total rainfall percent error were used for the quantitative comparison of ground observation rainfall data. In addition, correlation coefficient, Nash-Sutcliffe efficiency coefficient, and standardized RMSE were used for the quantitative comparison of inflow rate. As a result of the simulation, the correlation coefficient up to six hours was 0.7 or higher, indicating a high correlation. Furthermore, the Nash-Sutcliffe efficiency coefficient was positive until six hours, confirming the applicability of forecast rainfall.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

Sediment Estimation of Large Reservoir Using Daily Flowrate Analysis (일유량 분석을 이용한 대규모 저수지의 퇴사량 추정)

  • 정재성
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.417-423
    • /
    • 1997
  • The objective of this study Is to supply basic data for large reservoir sedimentation research In future and make suggestions to maintain and opera능 the reservoir more of efficiently. At first, previous studios about the estimation of sediment yield rate were reviewed in Korea. And the discharge rating curves of upstream stage gauging stations and the correlation between dam Inflow and stage discharge were analyzed. With the analysis results, the spec유c sediment rate of Soyanggang dam was estimated as 608 m3/km2/yr. It was similar to that of Soyanggang dam feasibility study and 1994's field surveys of the reservoir than that of 1983's field surveys. Because the sediment rating curves were derived under the low discharge conditions, It needs to be checked under the flood conditions. However, the suggested methods such as flowrate analysis and sediment estimation will be useful to the sediment studios In future. Key words . reservoir sediment, sediment yield rate, rating curve, flowrate analysis.

  • PDF

Application of a geophysical well log technique for determining permeability in borehole

  • Kim Y.;Park J.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.432-436
    • /
    • 2003
  • Geophysical well logging techniques which are useful for delineating permeability of geological formation have been reviewed. A new technique for obtaining permeability using conductivity log technique has been discussed. This conductivity logging technique has been tested by monitoring the conductivity change within the model hole using borehole environment water and incoming-outgoing water of different salinity with constant flow rate by maintaining balance between inflow and outflow. Conductivity variation features depended mainly on flow rate, density contrasts due to salinity and temperature contrasts between fluid within the hole and incoming-outgoing fluid. The results of the experiment show uniform change of fluid conductivity within bore hole with time, and a fairly good correlation between the flow rate and the conductivity change rate. This conductivity logging technique is expected to be an efficient tool for determining permeability.

  • PDF

Methane Recovery and Carbon Dioxide Stripping by MEA Solution the Autocirculation Bubble Lift Column Reactor (내부순환식 기포탑 반응기 상에서 MEA (monoethanolamine) 용액에 의한 이산화탄소 분리 및 메탄회수)

  • Lee, In-Hwa;Kim, Sun-Yil;Park, Ju-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • For the simultaneous methane recovery and $CO_2$-stripping, we have been developed dual vent auto circulation bubble lift column reactor, and evaluate optimum conditions for monoethanolamine (MEA) solutions as a $CO_2$ absorbent. At the 5 wt% MEA solution, we investigated the pH change during $CO_2$-stripping and absorption reaction, $CO_2$-stripping rate with reaction time, methane recovery efficiency for various inflow rates of air, $CO_2$-stripping rate for flow liquid over flow height, and $CO_2$-stripping dependency on the temperature of absolvent solutions. The suggested optimum conditions for $CO_2$ recovery with MEA in the dual vent auto circulation bubble lift column reactor were 40 mm over flow liquid height, 1.5 L/min of air inflow rate, and $25^{\circ}C$ of absorbent solution temperature.

Application of chemically enhanced backwash coping with algal inflow in desalination pretreatment using ceramic membrane (세라믹 분리막을 이용한 해수담수화 전처리 공정에서 조류 유입에 대한 유지세정 적용)

  • Kang, Joon-Seok;Park, Seo-Gyeong;Lee, Jeong-Jun;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • In this study, the effect of chemically enhanced backwash(CEB) coping with algal(Heterosigma Akashiwo) inflow was evaluated in the seawater desalination pretreatment process using ceramic membrane. In order to confirm the possibility of long-term filtration operation, the recovery rate of transmembrane pressure(TMP) due to the CEB using NaOCl was examined. When the membrane flow rate was 83.3 LMH, the TMP was maintained within 200 kPa for 84 hours in seawater influent. As the algal counts of 30,000 cell/mL were injected into the influent of seawater, however, the TMP rapidly increased and exceed maximum value. Membrane fouling caused by the algae was very poorly recovered by usual physical backwash. The CEB was performed for 30 min(3 min circulation / 27 min immersion) with 300 mg/L of NaOCl. As a result of the CEB application, it was possible to maintain a stable operating of filtration during 10 days and the average recovery rate of TMP by the CEB was 98.1%. It has been confirmed that the CEB using NaOCl is very effective in removal of membrane fouling by algae, resulted in stable membrane filtration for the long-term operation.