• Title/Summary/Keyword: Inflammatory marker

Search Result 228, Processing Time 0.02 seconds

Inhibitory effect of Fagopyrum esculentum on degranulation and production of cytokine in RBL-2H3 cells (교맥의 RBL-2H3 비만세포 탈과립과 cytokine 생산 억제 효과)

  • Kang, Kyung-Hwa;Lee, Seung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • Objectives : Fagopyrum esculentum(FE) has been used for removal of inflammation of internal organs and treatment of sore and ulcer by heat toxin in Korean herbal medicines. In this study, To investigated the protective effect of FE on allergic response, we determined whether FE inhibits allergic response. Methods : The effect of FE was analyzed by ELISA, RT-PCR and Western blot in RBL-2H3 cells. We investigated cell viability, ${\beta}$-hexosaminidase, as a marker of degranulation, cytokne, and intracellular ROS and MAPK and NF-${\kappa}B$ signaling. Results : We found that FE suppressed ${\beta}$-hexosaminidase release, the production of IL-4 and TNF-${\alpha}$ and intracellular ROS level in RBL-2H3 by the anti-DNP IgE plus DNP-HSA stimulation. FE also significantly inhibited cytokine mRNA expressions, such as IL-$1{\beta}$, IL-2, IL-3, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ and GM-CSF in RBL-2H3. In addition, PF suppressed the phospholyation of ERK1/2, JNK1/2, p38 and $I{\kappa}B{\alpha}$ and NF-${\kappa}B$ signal transduction pathway. Conclusions : Our results indicate that FE protects against allergic response and exerts an anti-inflammatory effect through the inhibition of degranulation and production of cytokines and ROS via the suppression MAPK and NF-${\kappa}B$ of signal transduction. Abbrevations : FE, Fagopyrum esculentum; RBL-2H3, rat basophilic leukemia cell line; ROS, reactive oxygen species; MAPK, Mitogen-activated protein kinase; $NF{\kappa}B$, nuclear factor ${\kappa}B$; $TNF{\alpha}$, Tumor necrosis factor alpha; GM-CSF, Granulocyte macrophage colony-stimulating factor; ERK, extracellular-signal-regulated kinase; JNK, c-Jun NH2-terminal kinase; p38, p38 MAP kinase; $I{\kappa}B{\alpha}$, inhibitory-kappa B alpha.

Melittin inhibits cell migration and invasion via blocking of the epithelial-mesenchymal transition (EMT) in lung cancer cells (EMT 억제를 통한 멜리틴의 폐암세포 이동 및 침투 억제 효과)

  • Cho, Hyun-Ji;Jeong, Yun-Jeong;Kim, Mun-Hyeon;Chung, Il-Kyung;Kang, Dong Wook;Chang, Young-Chae
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.105-110
    • /
    • 2018
  • Melittin is the main component of apitoxin (bee venom) that has been reported to have anti-inflammatory and anti-cancer effects. Herein, we demonstrated that inhibition of epithelial-mesenchymal transition (EMT) by melittin causes suppression of cancer cell migration and invasion. Melittin significantly suppressed the epidermal growth factor (EGF)-induced cell migration and invasion in lung cancer cells. Moreover, melittin up-regulated the expression of epithelial marker protein, E-cadherin, and down-regulated the expression of EMT related proteins, vimentin and fibronectin. Mechanistic studies revealed that melittin markedly suppressed the expression of EMT mediated transcription factors, ZEB2, Slug, and Snail. The EGF-induced phosphorylation of AKT, mTOR, P70S6K, and 4EBP1 was also inhibited by melittin, but not that of ERK and JNK. Therefore, the inhibitory effect of melittin on migration and invasion of lung cancer cells may be associated with the inhibition of EMT via blocking of the AKT-mTOR-P70S6K-4EBP1 pathway.

Prediction of itching diagnostic marker through RNA sequencing of contact hypersensitivity and skin scratching stimulation mice models

  • Kim, Young-Won;Zhou, Tong;Ko, Eun-A;Kim, Seongtae;Lee, Donghee;Seo, Yelim;Kwon, Nahee;Choi, Taeyeon;Lim, Heejung;Cho, Sungvin;Bae, Gwanhui;Hwang, Yuseong;Kim, Dojin;Park, Hyewon;Lee, Minjae;Jang, Eunkyung;Choi, Jeongyoon;Bae, Hyemi;Lim, Inja;Bang, Hyoweon;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.151-159
    • /
    • 2019
  • Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a, Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.

Ahnak-knockout mice show susceptibility to Bartonella henselae infection because of CD4+ T cell inactivation and decreased cytokine secretion

  • Choi, Eun Wha;Lee, Hee Woo;Lee, Jun Sik;Kim, Il Yong;Shin, Jae Hoon;Seong, Je Kyung
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.289-294
    • /
    • 2019
  • The present study evaluated the role of AHNAK in Bartonella henselae infection. Mice were intraperitoneally inoculated with $2{\times}10^8$ colony-forming units of B. henselae Houston-1 on day 0 and subsequently on day 10. Blood and tissue samples of the mice were collected 8 days after the final B. henselae injection. B. henselae infection in the liver of Ahnak-knockout and wild-type mice was confirmed by performing polymerase chain reaction, with Bartonella adhesion A as a marker. The proportion of B. henselae-infected cells increased in the liver of the Ahnak-knockout mice. Granulomatous lesions, inflammatory cytokine levels, and liver enzyme levels were also higher in the liver of the Ahnak-knockout mice than in the liver of the wild-type mice, indicating that Ahnak deletion accelerated B. henselae infection. The proportion of CD4+interferon-${\gamma}$ ($IFN-{\gamma}^+$) and $CD4^+$ interleukin $(IL)-4^+$ cells was significantly lower in the B. henselae-infected Ahnak-knockout mice than in the B. henselae-infected wild-type mice. In vitro stimulation with B. henselae significantly increased $IFN-{\gamma}$ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected wild-type mice, but did not increase $IFN-{\gamma}$ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected Ahnak-KO mice. In contrast, $IL-1{\alpha}$, $IL-1{\beta}$, IL-6, IL-10, RANTES, and tumor necrosis $factor-{\alpha}$ secretion was significantly elevated in the splenocytes obtained from both B. henselae-infected wild-type and Ahnak-knockout mice. These results indicate that Ahnak deletion promotes B. henselae infection. Impaired $IFN-{\gamma}$ and IL-4 secretion in the Ahnak-knockout mice suggests the impairment of Th1 and Th2 immunity in these mice.

A Study on Melanin Reduction through Autophagy by 2'-Fucosyllactose (2'-푸코실락토오스의 자가포식을 통한 멜라닌 감소 연구)

  • Jung, So Young;Yoo, Han Jun;Heo, Hyojin;Lee, So Min;Brito, Sofia;Cha, Byungsun;Lei, Lei;Lee, Sang Hun;Bin, Bum-Ho;Lee, Mi-Gi;Kwak, Byeong-Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2022
  • 2'-fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) present in breast milk, promoting the growth of beneficial microorganisms in the gut and aiding in the relief of allergic and inflammatory reactions. In this study, the anti-melanogenic effects of 2'-FL, and its potential for application in whitening cosmetics, were evaluated. MTT assay was performed on MNT-1 cells, human-derived melanocytes. 2'-FL was treated and replaced at 48 h intervals for 7 days, and it was confirmed that there was no cytotoxicity at 20 g/L or less, while a 40% reduction in melanin production was also observed. Western blot analysis of TYR and TYRP1, factors involved in melanogenesis, revealed that 2'-FL treatment reduced their expression levels. In addition, 2'-FL application and observation of the autophagy marker microtubule-associated protein 1 light chain 3 (LC3) revealed it was converted from LC3-I to LC3-𝚷, indicating increased autophagy. Likewise, confocal microscopy revealed an increase in LC3 puncta after 2'-FL treatment. Therefore, it is suggested that 2'-FL-mediated activation of autophagy reduces melanogenesis by inhibiting the expression levels of TYR and TYRP1 proteins. In conclusion, it has been confirmed that 2'-FL induces autophagy and suppresses melanin production, so its potential as a whitening cosmetic material is expected.

Effect of SAL5 on chronic ethanol-induced fatty liver model (흰쥐에서 SAL5의 알코올성 지방간 형성에 미치는 영향)

  • Kim, Bok-Kyu;Yang, Won-Kyung;Park, Yang-Chun;Jung, Ga-Young;Shin, Eun-Ju;Do, Seon-Gil;Kim, Seung-Hyung
    • The Korea Journal of Herbology
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2018
  • Objective : In this study, we investigated the effect of SAL5(mixing extracts of Schisandra chinensis Baillon, Artemisia capillaris Thunb., and Aloe vera Linne) on chronic ethanol-induced fatty liver model. Methods : Sprague-Dawley male rats were fed Liber-DeCarli (normal), ethanol liquid diet (control), SAL5 (200 mg/kg). We administrated the SAL5 on chronic ethanol-induced fatty liver model for 5 weeks. We measured alkaline phosphtase (ALP), alanine transminase (ALT), aspartate transminase (AST) and ${\gamma}-glutamyl$ transpeptase (${\gamma}-GTP$) in serum and triglyceride (TG), superoxide dismutase (SOD), catalase, glutathione (GSH) and malondialdehyde (MDA) level in liver. Liver histopathology was examined by Hematoxylin-eosin and Oil red O staining of the fixed liver tissues. Real-time PCR was performed to measure the mRNA expression of inflammatory cytokines and MMP-2, MMP-9. Results : SAL5 administration resulted in significantly decreased liver marker enzymes activities of alanine transminase (ALT), ${\gamma}-glutamyl$ transpeptase (${\gamma}-GTP$) in serum and triglyceride (TG) activities in liver. The control group decreased the activities of superoxide dismutase (SOD), catalase (CAT) with the reduced level of glutathione (GSH) in liver. On the other hand, SAL5 group increased the activities of SOD, CAT and the level of GSH. SAL5 delayed the development of an alcoholic fatty liver by reversing fat accumulation in the liver, as evidenced in histological observations. The gene expression of mRNA were significantly decreased at the $IL-1{\beta}$, $TNF-{\alpha}$, NOS-II and MMP-2 by SAL5. Conclusions : These results indicate that SAL5 might have protective effect chronic ethanol-induced fatty liver models.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

The Effect of Pilates Mat Exercise on Cardiovascular Disease Risk Factors and Inflammation Markers in Sarcopenic Obesity Elderly (필라테스 매트운동이 근위축 비만 노인의 심혈관질환 위험요인과 염증반응지표에 미치는 영향)

  • Kim, Hyun-Tae;Kim, Nam-Jung
    • 한국체육학회지인문사회과학편
    • /
    • v.51 no.4
    • /
    • pp.407-417
    • /
    • 2012
  • The purpose of the study was to determine the effects of pilates mat exercise on cardiovascular disease risk factors and inflammation markers in sarcopenic obesity elderly. All subjects were sarcopenic obesity(height for each of the arms, legs, appendicular muscle mass ratio of 1.16kg/m2, 4.31kg/m2, 5.21kg/m2 under and % body fat is more than 30%) elderly performed the pilates mat exercise during 12-week for 60 minutes 3 times a weeks. All subjects of this study were examined the changes in cardiovascular disease risk factors(TC, TG, HDL-C, LDL-C, Glucose, Insulin) and inflammation markers(fibrinogen, adiponectin, leptin, CRP). The results of the study in the exercise group were as follows; The weight, % body fat, TC, TG, LDL-C, fibrinogen, CRP had significantly decreased and muscle mass, HDL-C, adiponectin had significantly increased. And also, pilates mat exercise can effective to improve sarcopenic obesity, and pilates mat exercises performed coy shrink obesity to cardiovascular disease and inflammatory response indicators of older women as old man's physical features of the deterioration of the prevention of obesity and muscle strength loss, causing the effective exercise method is meant to be.

Effects of Sulraphane on Osteoclastogenesis in RAW 264.7 (RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.151-160
    • /
    • 2016
  • Inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. Sulforaphane, isolated from the Broccoli(Brassica oleracea var. italia) florets, inhibits the production of inflamatory cytokine. In the present study, we determined inhibitory effect of sulforaphane on Receptor activator of nuclear factor κB ligand(RANKL)-induced osteoclast formation. Sulforaphane inhibited the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase(TRAP), cathepsin K, matrix metalloproteinase 9(MMP-9), and calcitonin receptor in RANKL-induced RAW 264.7 macrophage. Also, sluforaphane inhibited the expression of osteoclast protein, such as TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6) and transcription factor nuclease factor of activated T cells(NFAT)c1. Sulforaphane inhibited RANKL-induced activiation of nuclear factor kappaB(NF-kappaB) by suppression RANKL-mediated NF-kappaB transcriptional acitivation. We are confirmed that sulforaphane inhibits not only transcriptional activity of NF-kappaB but also expressions of the osteoclastogenesis factors(TRAP, cathepsin K, MMP-9, calcitonin, TRAF6) and trranscription factor NFATc1.

C-reactive protein accelerates DRP1-mediated mitochondrial fission by modulating ERK1/2-YAP signaling in cardiomyocytes

  • Suyeon Jin;Chan Joo Lee;Gibbeum Lim;Sungha Park;Sang-Hak Lee;Ji Hyung Chung;Jaewon Oh;Seok-Min Kang
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.663-668
    • /
    • 2023
  • C-reactive protein (CRP) is an inflammatory marker and risk factor for atherosclerosis and cardiovascular diseases. However, the mechanism through which CRP induces myocardial damage remains unclear. This study aimed to determine how CRP damages cardiomyocytes via the change of mitochondrial dynamics and whether survivin, an anti-apoptotic protein, exerts a cardioprotective effect in this process. We treated H9c2 cardiomyocytes with CRP and found increased intracellular ROS production and shortened mitochondrial length. CRP treatment phosphorylated ERK1/2 and promoted increased expression, phosphorylation, and translocation of DRP1, a mitochondrial fission-related protein, from the cytoplasm to the mitochondria. The expression of mitophagy proteins PINK1 and PARK2 was also increased by CRP. YAP, a transcriptional regulator of PINK1 and PARK2, was also increased by CRP. Knockdown of YAP prevented CRP-induced increases in DRP1, PINK1, and PARK2. Furthermore, CRP-induced changes in the expression of DRP1 and increases in YAP, PINK1, and PARK2 were inhibited by ERK1/2 inhibition, suggesting that ERK1/2 signaling is involved in CRP-induced mitochondrial fission. We treated H9c2 cardiomyocytes with a recombinant TAT-survivin protein before CRP treatment, which reduced CRP-induced ROS accumulation and reduced mitochondrial fission. CRP-induced activation of ERK1/2 and increases in the expression and activity of YAP and its downstream mitochondrial proteins were inhibited by TAT-survivin. This study shows that mitochondrial fission occurs during CRP-induced cardiomyocyte damage and that the ERK1/2-YAP axis is involved in this process, and identifies that survivin alters these mechanisms to prevent CRP-induced mitochondrial damage.