• Title/Summary/Keyword: Inflammatory gene expression

Search Result 710, Processing Time 0.038 seconds

Effects of Lithospermum erythrorhizon extracts on P. acnes induced cytokine gene expression in human monocytes (자초(紫草) 추출물이 P. acnes의 단핵구 세포 사이토카인 유전자 발현에 미치는 영향)

  • Seo, Min-Su;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.2
    • /
    • pp.57-68
    • /
    • 2010
  • Objective : This study was performed to evaluate the effect of Lithospermum erythrorhizon extracts on the inflammatory cytokines gene expression by the bacteria of Propionibacterium acnes (P. acnes) which elicits acne in human monocytes, THP-1 cell line. Experiment : Cytotoxicity of Lithospermum erythrorhizon extracts was analyzed by XTT assay. Real time RT-PCR was applied to analyze the cytokines gene expressions of IL-8, MCP-1 and TNF-$\alpha$. Translocation of transcription factor NF-${\kappa}B$ from cytoplasm into nucleus was observed using immunocytochemistry and confocal microscopy. Results : Lithospermum erythrorhizon extracts did not show cytotoxicity as high as in $1,000\;{\mu}g/ml$ of concentration. Transcription levels of inflammatory cytokines, IL-8, MCP-1 and TNF-$\alpha$ were increased by P. acnes in THP-1 and Lithospermum erythrorhizon extracts decreased the upregulated transcription levels. Lithospermum erythrorhizon extracts significantly inhibited the translocation of NF-${\kappa}B$ into nucleus by P. acnes. Conclusion : This study suggests that Lithospermum erythrorhizon extracts have anti-inflammatory effects on P. acnes treated THP-1 as decreasing the mRNA expressions of IL-8, MCP-1 and TNF-$\alpha$. This anti-inflammatory effect of Lithospermum erythrorhizon extracts may be useful in therapeutic treatments for acne vulgaris.

Anti-Helicobacter and Anti-inflammatory Effects of Sohamhyungtang in Helicobacter pylori-Infected Human Gastric Epithelial AGS cells

  • Won, SangBum;Yim, Dongsool;Choi, SungSook
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.175-182
    • /
    • 2017
  • This study evaluated the anti-Helicobacter and anti-inflammatory effects of Sohamhyungtang (SHHT). The minimum inhibitory concentration (MIC) of SHHT against Helicobacter pylori (H. pylori) was determined by the agar dilution method. Expression of the H. pylori cagA gene in the presence of SHHT was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Inhibition of H. pylori urease by SHHT was determined by the phenol-hypochlorite assay. Antiadhesion activity of SHHT was measured by urea-phenol red reagent. Inhibition of nitric oxide (NO) production in AGS cells was measured with Griess reagent. Inducible nitric oxide synthase (iNOS) and IL-8 mRNA expression in AGS cells which were infected with H. pylori was determined by qRT-PCR. IL-8 level was measured by enzyme-linked immunosorbent assay (ELISA). The MIC of SHHT was $100{\mu}g/mL$ and the expression of cagA gene was decreased about 25 folds in the presence of SHHT. H. pylori urease was inhibited 90% by SHHT. SHHT inhibited H. pylori adhesion on AGS cell in a concentration dependent manner. mRNA expression of iNOS and IL-8 and the production of NO and IL-8 were significantly decreased in the presence of SHHT. In conclusion, SHHT showed anti-Helicobacter activity and has potent anti-inflammatory effect on H. pylori-induced inflammation in human gastric epithelial AGS cells.

Anti-bacterial and Anti-inflammatory Effects of Angelica dahurica Extracts in Helicobacter pylori-infected Human Gastric Epithelial AGS Cells (백지(Angelica dahurica) 추출물의 Helicobacter pylori에 대한 항균력 및 H. pylori로 유도한 염증반응에 대한 항염 효과)

  • Choi, Min Kyeong;Yim, Dongsool;Choi, SungSook
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.255-261
    • /
    • 2018
  • The aim of this study was to evaluate the anti-helicobacter activity and anti-inflammatory activity of Angelica dahurica (AD). The minimum inhibitory concentration(MIC) of AD against Helicobacter pylori(H. pylori), expression of the H. pylori cagA gene in the presence of AD was determined. Inhibition of H. pylori urease by AD, inhibition of nitric oxide (NO) production in AGS cells was measured. IL-8 mRNA expression in AGS cells which were infected with H. pylori and IL-8 level was measured. The MIC of MeOH Ex. of AD was $250{\mu}g/mL$ and the expression of cagA gene was decreased about 88% in the presence of AD. The activity of H. pylori urease was inhibited 70% by AD. mRNA expression of IL-8 and the production of NO and IL-8 were significantly decreased in the presence of AD. In conclusion, AD showed anti-Helicobacter activity and has potent anti-inflammatory effect on H. pylori-induced inflammation in human gastric epithelial AGS cells.

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.

Comparison of Inhibitory Potency of Various Antioxidants on the Activation of BV2 Microglial Cell Lines Induced by LPS

  • Kong, Pil-Jae;Park, Jong-Ik;Kwon, Oh-Yoon;Han, Yoon-Hee;Kim, Soo-Young;Lee, Su-Nam;Son, Hee-Jeong;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • Antioxidant properties have been proposed as a mechanism for the putative anti-inflammatory effects of phenolic compounds. To reveal the relationship between antioxidant activity and anti-inflammatory effects of various antioxidants, we measured 1, 1-diphenyl-2-picryhydrazyl(DPPH)-reducing activity and examined the inhibitory effects on LPS-induced inflammation-related gene expression in the BV2 microglial cell line. Lipopolysaccharide(LPS)(0.2 ${\mu}g/ml$) was used with or without antioxidants to treat cells, and the regulation of iNOS and cytokine gene expression was monitored using an RNase protection assay(RPA). Although, all tested antioxidants had similar DPPH-reducing activity and inhibited nitrite production, but the curcuminoid antioxidants(ferulic acid, caffeic acid, and curcumin) inhibited LPS-induced gene expression(iNOS, $TNF-\alpha,\;IL-1{\beta}$, IL-6, and IL-1 Ra) in a concentration-dependent manner. Other tested antioxidants did not exhibit the same effects; N-acetylcysteine(NAC) only began to suppress $IL-1{\beta}$ gene expression just below the concentration at which cytotoxicity occurred. Moreover, the antioxidant potency of curcuminoids appeared to have no correlation with anti-inflammatory potency. Only curcumin could inhibit LPS-induced microglial activation at a micromolar level. These data suggest that curcumin may be a safe antioxidant possessing anti-inflammatory activity.

Hepatic Vascular Stress Gene Expression in the Liver Response to Trauma

  • Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.62-67
    • /
    • 2004
  • Trauma remains one of the important sources leading to systemic inflammatory response anti sub-sequent multiple organ failure. Although hepatic microvascular dysfunction occurs during trauma, the mechanism responsible remains unclear. The aim of this study was to investigate the effect of trauma on hepatic vascular stress gene expression. Femur fracture (EFx) was induced by torsion to the femur at midshaft. Liver samples were taken for RT-PCR analysis of mRNA for gtenes of interest: endothelin-1 (ET-1), its receptors $ET_A$ and $ET_B$, nitric oxide synthases (iNOS and eNOS), cyclooxygenase-2 (COX-2), heme oxygenase-1 (HO-1), and tumor necrosis tactor-${\alpha}$ (TNF-${\alpha}$). The expression of ET-1 mRNA was significantly increased by FFx. Expression of mRNA in FFx group showed no change in $ET_A$, $ET_B$, iNOS and HO-1 and showed a slight increase of 2.2-fold and 2.7-fold for eNOS tll1d COX-2, respectively. The level of TNF-${\alpha}$ mRNA significantly increased in FFx group. In conclusion, mild trauma alone causes little change in expression of vasoactive mediators.

Association of an Anti-inflammatory Cytokine Gene IL4 Polymorphism with the Risk of Type 2 Diabetes Mellitus in Korean Populations

  • Go, Min-Jin;Min, Hae-Sook;Lee, Jong-Young;Kim, Sung-Soo;Kim, Yeon-Jung
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.114-120
    • /
    • 2011
  • Chronic inflammation has been implicated as one of the important etiological factors in insulin resistance and type 2 diabetes mellitus (T2DM). To investigate the role of anti-inflammatory cytokines in the development of T2DM, we conducted a case-control study to assess the association between IL4/IL4R polymorphisms and disease risk. We firstly identified single nucleotide poly-morphisms (SNP) at IL4 and IL4RA loci by sequencing the loci in Korean participants. Case-control studies were conducted by genotyping the SNPs in 474 T2DM cases and 470 non-diabetic controls recruited from community-based cohorts. Replication of the associated signals was performed in 1,216 cases and 1,352 controls. We assessed effect of IL4 -IL4RA interaction on T2DM using logistic regression method. The functional relevance of the SNP associated with disease risk was determined using a reporter expression assay. We identified a strong association between the IL4 promoter variant rs2243250 and T2DM risk (OR=0.77; 95% CI, 0.67~0.88; p=$1.65{\times}10^{-4}$ in the meta-analysis). The reporter gene expression assay demonstrated that the presence of rs2243250 might affect the gene expression level with ~1.5-fold allele difference. Our findings contribute to the identification of IL4 as a T2D susceptibility locus, further supporting the role of anti-inflammatory cytokines in T2DM disease development.

Anisomycin protects against sepsis by attenuating IκB kinase-dependent NF-κB activation and inflammatory gene expression

  • Park, Gyoung Lim;Park, Minkyung;Min, Jeong-Ki;Park, Young-Jun;Chung, Su Wol;Lee, Seon-Jin
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.545-550
    • /
    • 2021
  • Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1β as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κB-inducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis.

Apelin-APJ axis inhibits TNF-alpha-mediated expression of genes involved in the inflammatory response in periodontal ligament cells

  • Lee, Gyuseok;Song, Won-Hyun;Kim, Su-Jin;Kim, Young-Gwon;Ryu, Je-Hwang
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.182-190
    • /
    • 2019
  • Periodontitis is an inflammatory disease of the supportive tissues surrounding the teeth, and is characterized by irreversible destruction of the gingiva, periodontal ligament (PDL), and alveolar bone, which results in the loss of teeth. In the present study, we elucidated the correlation between periodontitis and apelin (APLN), an adipokine and a regulatory peptide, respectively, which are involved in inflammation and bone remodeling. The expression of APLN is negatively correlated with periodontitis progression in gingival tissue. In addition, treatment with TNF-α downregulated the expression of APLN in PDL cells and gingival fibroblasts, indicating the protective role played by APLN against periodontitis progression. The overexpression of APLN or treatment with exogenous APLN suppressed the TNF-α-mediated catabolic gene expression of MMP1, IL6, and PTGS2 in PDL cells. Moreover, the inhibition of the APLNA-PJ axis by ML221, an APJ inhibitor, induced catabolic gene expression in PDL cells. Thus, the results of this study provided evidence to support APLN as a regulatory factor of the inflammatory response during periodontitis.

Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line

  • Damte, Dereje;Lee, Seung-Jin;Birhanu, Biruk Tesfaye;Suh, Joo-Won;Park, Seung-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2153-2159
    • /
    • 2015
  • Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation — only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.