• Title/Summary/Keyword: Inflammatory effect

Search Result 4,490, Processing Time 0.035 seconds

Effect of extract from Maclura tricuspidata twig fermented with Ganoderma lucidum mycelium on adipocyte differentiation and inflammation in 3T3-L1 cells (영지버섯 균사체 발효 꾸지뽕 잔가지 추출물의 3T3-L1 지방전구세포 분화 억제 및 항염증 효과)

  • Ki-Man Kim;Se-Eun Park;Seung Kim
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.502-513
    • /
    • 2023
  • This study aimed to evaluate the anti-adipogenic and anti-inflammation effects of extract from Maclura tricuspidata twig fermented with Ganoderma lucidum mycelium (EMFG) in 3T3-L1 preadipocytes. 3T3-L1 adipocytes were treated with 100, 200, 300 ㎍/mL of EMFG. The result showed that EMFG dose-dependently inhibited the accumulation of intracellular lipid content in differentiated 3T3-L1 adipocytes and enhanced increase of adiponectin release and inhibition of leptin release. EMFG treatment reduced expression of adipogenic transcriptional factor such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα). EMFG also decreased production of lipopolysaccharide (LPS)-induced inflammatory cytokine [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1)] and the protein expression of cyclooxygenase-2 (COX-2) and inducible NOS (iNOS) in differentiated 3T3-L1 adipocytes. The study demonstrated that EMFG inhibited adipogenesis and inflammation in a dose-dependent manner. These findings suggest that EMFG may have potential as an anti-obesity and anti-metabolic disease agent that works by inhibiting adipogenesis and inflammation.

Clinical and Imaging Characteristics of SARS-CoV-2 Breakthrough Infection in Hospitalized Immunocompromised Patients

  • Jong Eun Lee;Jinwoo Kim;Minhee Hwang;Yun-Hyeon Kim;Myung Jin Chung;Won Gi Jeong;Yeon Joo Jeong
    • Korean Journal of Radiology
    • /
    • v.25 no.5
    • /
    • pp.481-492
    • /
    • 2024
  • Objective: To evaluate the clinical and imaging characteristics of SARS-CoV-2 breakthrough infection in hospitalized immunocompromised patients in comparison with immunocompetent patients. Materials and Methods: This retrospective study analyzed consecutive adult patients hospitalized for COVID-19 who received at least one dose of the SARS-CoV-2 vaccine at two academic medical centers between June 2021 and December 2022. Immunocompromised patients (with active solid organ cancer, active hematologic cancer, active immune-mediated inflammatory disease, status post solid organ transplantation, or acquired immune deficiency syndrome) were compared with immunocompetent patients. Multivariable logistic regression analysis was performed to evaluate the effect of immune status on severe clinical outcomes (in-hospital death, mechanical ventilation, or intensive care unit admission), severe radiologic pneumonia (≥ 25% of lung involvement), and typical CT pneumonia. Results: Of 2218 patients (mean age, 69.5 ± 16.1 years), 274 (12.4%), and 1944 (87.6%) were immunocompromised an immunocompetent, respectively. Patients with active solid organ cancer and patients status post solid organ transplantation had significantly higher risks for severe clinical outcomes (adjusted odds ratio = 1.58 [95% confidence interval {CI}, 1.01-2.47], P = 0.042; and 3.12 [95% CI, 1.47-6.60], P = 0.003, respectively). Patient status post solid organ transplantation and patients with active hematologic cancer were associated with increased risks for severe pneumonia based on chest radiographs (2.96 [95% CI, 1.54-5.67], P = 0.001; and 2.87 [95% CI, 1.50-5.49], P = 0.001, respectively) and for typical CT pneumonia (9.03 [95% CI, 2.49-32.66], P < 0.001; and 4.18 [95% CI, 1.70-10.25], P = 0.002, respectively). Conclusion: Immunocompromised patients with COVID-19 breakthrough infection showed an increased risk of severe clinical outcome, severe pneumonia based on chest radiographs, and typical CT pneumonia. In particular, patients status post solid organ transplantation was specifically found to be associated with a higher risk of all three outcomes than hospitalized immunocompetent patients.

Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms

  • Hanna Lee;Ok-Yi Jeong;Hee Jin Park;Sung-Lim Lee;Eun-yeong Bok;Mingyo Kim;Young Sun Suh;Yun-Hong Cheon;Hyun-Ok Kim;Suhee Kim;Sung Hak Chun;Jung Min Park;Young Jin Lee;Sang-Il Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.45.1-45.22
    • /
    • 2023
  • Interstitial lung disease (ILD) involves persistent inflammation and fibrosis, leading to respiratory failure and even death. Adult tissue-derived mesenchymal stem cells (MSCs) show potential in ILD therapeutics but obtaining an adequate quantity of cells for drug application is difficult. Daewoong Pharmaceutical's MSCs (DW-MSCs) derived from embryonic stem cells sustain a high proliferative capacity following long-term culture and expansion. The aim of this study was to investigate the therapeutic potential of DW-MSCs in experimental mouse models of ILD. DW-MSCs were expanded up to 12 passages for in vivo application in bleomycin-induced pulmonary fibrosis and collagen-induced connective tissue disease-ILD mouse models. We assessed lung inflammation and fibrosis, lung tissue immune cells, fibrosis-related gene/protein expression, apoptosis and mitochondrial function of alveolar epithelial cells, and mitochondrial transfer ability. Intravenous administration of DWMSCs consistently improved lung fibrosis and reduced inflammatory and fibrotic markers expression in both models across various disease stages. The therapeutic effect of DW-MSCs was comparable to that following daily oral administration of nintedanib or pirfenidone. Mechanistically, DW-MSCs exhibited immunomodulatory effects by reducing the number of B cells during the early phase and increasing the ratio of Tregs to Th17 cells during the late phase of bleomycin-induced pulmonary fibrosis. Furthermore, DW-MSCs exhibited anti-apoptotic effects, increased cell viability, and improved mitochondrial respiration in alveolar epithelial cells by transferring their mitochondria to alveolar epithelial cells. Our findings indicate the strong potential of DW-MSCs in the treatment of ILD owing to their high efficacy and immunomodulatory and anti-apoptotic effects.

Pharmacoacupuncture for the Treatment of Frozen Shoulder: protocol for a systematic review and meta-analysis

  • Ji-Ho Lee;Hyeon-Sun Park;Sang-Hyeon Park;Dong-Ho Keum;Seo-Hyun Park
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.14-20
    • /
    • 2024
  • Objectives: Frozen shoulder (FS) is one of the most challenging shoulder disorders for patients and clinicians. Its symptoms mainly include any combination of stiffness, nocturnal pain, and limitation of active and passive glenohumeral joint movement. Conventional treatment options for FS are physical therapy, nonsteroidal anti-inflammatory drugs, injection therapy, and arthroscopic capsular release, but adverse and limited effects continue to present problems. As a result, pharmacoacupuncture (PA) is getting attention as an alternative therapy for patients with FS. PA is a new form of acupuncture treatment in traditional Korean medicine (TKM) that is mainly used for musculoskeletal diseases. It has similarity and specificity compared to corticosteroid injection and hydrodilatation, making it a potential alternative injection therapy for FS. However, no systematic reviews investigating the utilization of PA for FS have been published. Therefore, this review aims to standardize the clinical use of PA for FS and validate its therapeutic effect. Methods: The protocol was registered in Prospero (CRD42023445708) on 18 July 2023. Until Aug. 31, 2023, seven electronic databases will be searched for randomized controlled trials of PA for FS. Authors will be contacted, and manual searches will also be performed. Two reviewers will independently screen and collect data from retrieved articles according to predefined criteria. The primary outcome will be pain intensity, and secondary outcomes will be effective rate, Constant-Murley Score, Shoulder Pain and Disability Index, range of motion, quality of life, and adverse events. Bias and quality of the included trials will be assessed using the Cochrane handbook's risk-of-bias tool for randomized trials. Meta analyses will be conducted using Review Manager V.5.3 software. GRADE will be used to evaluate the level of evidence for each outcome. Results: This systematic review and meta-analysis will be conducted following PRISMA statement. The results will be published in a peer-reviewed journal. Conclusion: This review will provide scientific evidence to support health insurance policy as well as the standardization of PA in clinical practice.

Anti-adipogenic activity of Smilax sieboldii extracts in 3T3-L1 adipocytes (3T3-L1 지방전구세포에서 청가시덩굴 추출물의 항비만 활성)

  • Seohyun Park;Jung A Lee;Seong Su Hong;Eun-Kyung Ahn
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.369-378
    • /
    • 2023
  • Smilax sieboldii is one of the Smilax species. A number of Smilax plants have multiple physiologically-active components and anti-inflammatory/anti-oxidant effects. Antiobesity effects induced by Smilax sieboldii have not been reported. In this study, we investigated the effects and molecular mechanisms of anti-obesity activity of 70% ethanol Smilax sieboldii extract (SSE). The anti-obesity effect of SSE was determined using 3T3-L1 adipocytes. We confirmed that SSE was not cytotoxic to murine 3T3-L1 preadipocytes, we evaluated SSE dose-dependently decreased the accumulation of lipids via an Oil Red O assay and triglyceride assay. These anti-obesity activities of SSE were mediated by the inhibition of adipogenesis-related marker genes (peroxisome proliferator activated receptor-γ, CCAAT-enhancer-binding protein α, and SREBP1c) and lipogenesis-related marker genes (fatty acid synthase and aP2). These results suggest that SSE has the potential to exert anti-obesity and anti-hyperlipidemia effects by regulating adipogenic transcription factors and inhibiting the expression of adipogenic markers.

Effects of the interaction between seaweed consumption and the polygenic risk score on inflammation in Korean adults (한국 성인의 해조류 섭취와 다유전자 위험 점수 간의 상호작용이 염증에 미치는 영향)

  • Gayeon Hong;Dayeon Shin
    • Journal of Nutrition and Health
    • /
    • v.57 no.2
    • /
    • pp.211-227
    • /
    • 2024
  • Introduction: Seaweed is a sustainable and underexplored source of bioactive compounds with potent anti-inflammatory activities. However, studies on the interaction between seaweed and genes on inflammation are limited. Purpose: We aimed to evaluate the relationships between seaweed consumption and the polygenic risk scores (PRS) and their interactions with high-sensitivity C-reactive protein (hs-CRP) levels. Methods: Information on seaweed consumption was collected using a food frequency questionnaire, which included laver, kelp, and sea mustard among the items consumed. A total of 31 hs-CRP-related single nucleotide polymorphisms (SNPs) were selected using genome-wide association studies and clumping analysis, and the individual PRS were calculated by weighting the effect size of each allele in the selected SNPs of 39,369 middle-aged (≥40 years) Koreans using the Korean Genome and Epidemiology Study (KoGES)-Health Examinees (HEXA) cohort data. To investigate the interaction between seaweed intake and the PRS on hs-CRP levels >1 mg/L, hazard ratios (HRs) and 95% confidence intervals (CIs) were assessed using multivariable Cox proportional hazards models. Results: During a mean follow-up period of 4.8 years, we recorded 436 patients with elevated hs-CRP levels. Women in the highest tertile of the PRS with the lowest quartile of seaweed intake had an increased incidence of elevated hs-CRP levels compared with women in the lowest tertile of the PRS with the lowest seaweed intake quartile (HR 2.34, 95% CI 1.23-4.45). No significant association was observed among the men. Conclusion: In conclusion, we identified a new interaction between the PRS, seaweed intake, and inflammation in Korean women, and this study suggests that the interaction between the identification of genetic predisposition and dietary seaweed intake may have an impact on determining the risk of developing hyperinflammation in the future.

GRIM-19 Ameliorates Multiple Sclerosis in a Mouse Model of Experimental Autoimmune Encephalomyelitis with Reciprocal Regulation of IFNγ/Th1 and IL-17A/Th17 Cells

  • Jeonghyeon Moon;Seung Hoon Lee;Seon-yeong Lee;Jaeyoon Ryu;Jooyeon Jhun;JeongWon Choi;Gyoung Nyun Kim;Sangho Roh;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.40.1-40.15
    • /
    • 2020
  • The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) is located in the mitochondrial inner membrane and is homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain. Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord. Although both the cause and mechanism of MS progression remain unclear, it is accepted that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ expression increased in EAE mice that received injections of the GRIM-19 OVN. GRIM19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.

Wedelolactone Promotes the Chondrogenic Differentiation of Mesenchymal Stem Cells by Suppressing EZH2

  • Wei Qin;Lin Yang;Xiaotong Chen;Shanyu Ye;Aijun Liu;Dongfeng Chen;Kunhua Hu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.326-341
    • /
    • 2023
  • Background and Objectives: Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results: Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions: These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.

The Effects of Proinflammatory Cytokines and TGF-beta, on The Fibroblast Proliferation (Proinflammatory Cytokines과 TGF-beta가 섬유모세포의 증식에 미치는 영향)

  • Kim, Chul;Park, Choon-Sik;Kim, Mi-Ho;Chang, Hun-Soo;Chung, Il-Yup;Ki, Shin-Young;Uh, Soo-Taek;Moon, Seung-Hyuk;Kim, Yong-Hoon;Lee, Hi-Bal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.861-869
    • /
    • 1998
  • Backgrounds: The injury of a tissue results in the infalmmation, and the imflammed tissue is replaced by the normal parenchymal cells during the process of repair. But, constitutional or repetitive damage of a tissue causes the deposition of collagen resulting in the loss of its function. These lesions are found in the lung of patients with idiopathic pulmonary fibrosis, complicated fibrosis after diffuse alveolar damage (DAD) and inorganic dust-induced lung fibrosis. The tissue from lungs of patients undergoing episodes of active and/or end-stage pulmonary fibrosis shows the accumulation of inflammatory cells, such as mononuclear cells, neutrophils, mast cells and eosinophils, and fibroblast hyperplasia. In this regard, it appears that the inflammation triggers fibroblast activation and proliferation with enhanced matrix synthesis, stimulated by inflammatory mediators such as interleukin-1 (IL-1) and/or tumor necrosis factor (TNF). It has been well known that TGF-$\beta$ enhance the proliferation of fibroblasts and the production of collagen and fibronectin, and inhibit the degradation of collagen. In this regard, It is likely that TGF-$\beta$ undergoes important roles in the pathogenesis of pulmonary fibrosis. Nevertheless, this single cytokine is not the sole regulator of the pulmonary fibrotic response. It is likely that the balance of many cytokines including TGF-$\beta$, IL-1, IL-6 and TNF-$\alpha$ regulates the pathogenesis of pulmonary fibrosis. In this study, we investigate the interaction of TGF-$\beta$, IL-1$\beta$, IL-6 and TNF-$\alpha$ and their effect on the proliferation of fibroblasts. Methods: We used a human fibroblast cell line, MRC-5 (ATCC). The culture of MRC-5 was confirmed by immunofluorecent staining. First, we determined the concentration of serum in cuture medium, in which the proliferation of MRC-5 is supressed but the survival of MRC-5 is retained. Second, we measured optical density after staining the cytokine-stimulated cells with 0.5% naphthol blue black in order to detect the effect of cytokines on the proliferation of MRC-5. Result: In the medium containing 0.5% fetal calf serum, the proliferation of MRC-5 increased by 50%, and it was maintained for 6 days. IL-1$\beta$, TNF-$\alpha$ and IL-6 induced the proliferation of MRC-5 by 45%, 160% and 120%, respectively. IL-1$\beta$ and TNF-$\alpha$ enhanced TGF-$\beta$-induced proliferation of MRC-5 by 64% and 159%, but IL-6 did not affect the TGF-$\beta$-induced proliferation. And lNF-$\alpha$-induced proliferation of MRC-5 was reduced by IL-1$\beta$ in 50%. TGF-$\beta$, TNF-$\alpha$ and both induced the proliferation of MRC-5 to 89%, 135% and 222%, respectively. Conclusions: TNF-$\alpha$, TGF-$\beta$ and IL-1$\beta$, in the order of the effectiveness, showed the induction of MRC-5 proliferation of MRC-5. TNF-$\alpha$ and IL-1$\beta$ enhance the TGF-$\beta$-induced proliferation of MRC-5, but IL-6 did not have any effect TNF-$\alpha$-induced proliferation of MRC-5 is diminished by IL-1, and TNF-$\alpha$ and TGF-$\beta$ showed a additive effect.

  • PDF

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.